The QoS provisioning tri-mode energy saving mechanism for EPON networks

The QoS provisioning tri-mode energy saving mechanism for EPON networks The Ethernet passive optical network provides broadband Internet access but also consumes a lot of energy. Energy saving mechanisms using the dual-mode—Active and Sleep modes—design for optical network unit (ONU) in EPON still suffer unnecessary energy consumption, especially in asymmetric data flow such as video streaming downloading service. The Doze mode is particularly suitable for handling the asymmetric data flow since it allows the ONU’s transmitter to turn off while turning on its receiver to receive data from optical line termination (OLT). However, adding Doze mode into original dual-mode design incur a greater challenge for OLT to identify the current status of the ONU since the ONU cannot transmit any upstream message to OLT at either Doze or Sleep mode. In this paper, we propose a new QoS provisioning tri-mode energy saving scheme, by integrating the Doze mode into original dual-mode design, to allow the ONU to switch to one of the energy saving modes whenever no upstream traffic exists. A high-priority upstream packet, arriving at ONU of energy saving modes, is able to trigger the ONU back to Active mode for QoS provisioning purpose. Performance evaluation via simulation has demonstrated the effectiveness of such mechanism in various asymmetric data flow. Furthermore, we propose two additional enhanced approaches to increase the energy saving effects by deferring the triggering action of the high-priority upstream packet as well as coalescing new arrival packets during waiting time into the same scheduling cycle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

The QoS provisioning tri-mode energy saving mechanism for EPON networks

Loading next page...
 
/lp/springer_journal/the-qos-provisioning-tri-mode-energy-saving-mechanism-for-epon-RUk5cKjnCu
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-016-0616-5
Publisher site
See Article on Publisher Site

Abstract

The Ethernet passive optical network provides broadband Internet access but also consumes a lot of energy. Energy saving mechanisms using the dual-mode—Active and Sleep modes—design for optical network unit (ONU) in EPON still suffer unnecessary energy consumption, especially in asymmetric data flow such as video streaming downloading service. The Doze mode is particularly suitable for handling the asymmetric data flow since it allows the ONU’s transmitter to turn off while turning on its receiver to receive data from optical line termination (OLT). However, adding Doze mode into original dual-mode design incur a greater challenge for OLT to identify the current status of the ONU since the ONU cannot transmit any upstream message to OLT at either Doze or Sleep mode. In this paper, we propose a new QoS provisioning tri-mode energy saving scheme, by integrating the Doze mode into original dual-mode design, to allow the ONU to switch to one of the energy saving modes whenever no upstream traffic exists. A high-priority upstream packet, arriving at ONU of energy saving modes, is able to trigger the ONU back to Active mode for QoS provisioning purpose. Performance evaluation via simulation has demonstrated the effectiveness of such mechanism in various asymmetric data flow. Furthermore, we propose two additional enhanced approaches to increase the energy saving effects by deferring the triggering action of the high-priority upstream packet as well as coalescing new arrival packets during waiting time into the same scheduling cycle.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Mar 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off