The putative Arabidopsis zinc transporter ZTP29 is involved in the response to salt stress

The putative Arabidopsis zinc transporter ZTP29 is involved in the response to salt stress Salt stress leads to a stress response, called the unfolded protein response (UPR), in the endoplasmic reticulum (ER). UPR is also induced in a wide range of organisms by zinc deficiency. However, it is not clear whether regulation of zinc levels is involved in the initiation of the UPR in plant response to salt stress. In this study, a putative zinc transporter, ZTP29, was identified in Arabidopsis thaliana. ZTP29 localizes to the ER membrane and is expressed primarily in hypocotyl and cotyledon tissues, but its expression can be induced in root tissue by salt stress. T-DNA insertion into the ZTP29 gene led to NaCl hypersensitivity in seed germination and seedling growth, leaf etiolation, and widening of cells in the root elongation zone. In addition, in ztp29 mutant plants, salt stress-induced upregulation of the UPR pathway genes BiP2 and bZIP60 was inhibited. Furthermore, under conditions of salt stress, upregulation of BiP2 and bZIP60 was inhibited by treatment with high concentrations of zinc in both control and ztp29 plants. However, zinc chelation restored salt stress-induced BiP2 and bZIP60 upregulation in ztp29 mutant plants. These experimental results suggest that ZTP29 is involved in the response to salt stress, perhaps through regulation of zinc levels required to induce the UPR pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The putative Arabidopsis zinc transporter ZTP29 is involved in the response to salt stress

Loading next page...
 
/lp/springer_journal/the-putative-arabidopsis-zinc-transporter-ztp29-is-involved-in-the-hvbRFKN6U1
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9633-4
Publisher site
See Article on Publisher Site

Abstract

Salt stress leads to a stress response, called the unfolded protein response (UPR), in the endoplasmic reticulum (ER). UPR is also induced in a wide range of organisms by zinc deficiency. However, it is not clear whether regulation of zinc levels is involved in the initiation of the UPR in plant response to salt stress. In this study, a putative zinc transporter, ZTP29, was identified in Arabidopsis thaliana. ZTP29 localizes to the ER membrane and is expressed primarily in hypocotyl and cotyledon tissues, but its expression can be induced in root tissue by salt stress. T-DNA insertion into the ZTP29 gene led to NaCl hypersensitivity in seed germination and seedling growth, leaf etiolation, and widening of cells in the root elongation zone. In addition, in ztp29 mutant plants, salt stress-induced upregulation of the UPR pathway genes BiP2 and bZIP60 was inhibited. Furthermore, under conditions of salt stress, upregulation of BiP2 and bZIP60 was inhibited by treatment with high concentrations of zinc in both control and ztp29 plants. However, zinc chelation restored salt stress-induced BiP2 and bZIP60 upregulation in ztp29 mutant plants. These experimental results suggest that ZTP29 is involved in the response to salt stress, perhaps through regulation of zinc levels required to induce the UPR pathway.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off