The Purkinje cell degeneration 5J mutation is a single amino acid insertion that destabilizes Nna1 protein

The Purkinje cell degeneration 5J mutation is a single amino acid insertion that destabilizes... In the mouse, Purkinje cell degeneration (pcd) is a recessive mutation characterized by degeneration of cerebellar Purkinje cells, retinal photoreceptors, olfactory bulb mitral neurons, and certain thalamic neurons, and is accompanied by defective spermatogenesis. Previous studies of pcd have led to the identification of Nna1 as the causal gene; however, how loss of Nna1 function results in neurodegeneration remains unresolved. One useful approach for establishing which functional domains of a protein underlie a recessive phenotype has been to determine the genetic basis of the various alleles at the locus of interest. Because none of the pcd alleles analyzed at the time of the identification of Nna1 provided insight into the molecular basis of Nna1 loss-of-function, we obtained a recent pcd remutation—pcd 5J , and after determining that its phenotype is comparable to existing pcd severe alleles, we sought its genetic basis by sequencing Nna1. In this article we report that pcd 5J results from the insertion of a single GAC triplet encoding an aspartic acid residue at position 775 of Nna1. Although this insertion does not affect Nna1 expression at the RNA level, Nna1 pcd-5J protein expression is markedly decreased. Pulse-chase experiments reveal that the aspartic acid insertion dramatically destabilizes Nna1 pcd-5J protein, accounting for the observation that pcd 5J is a severe allele. The presence of a readily detectable genetic mutation in pcd 5J confirms that Nna1 loss-of-function alone underlies the broad pcd phenotype and will facilitate further studies of how Nna1 loss-of-function produces neurodegeneration and defective spermatogenesis in pcd mice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

The Purkinje cell degeneration 5J mutation is a single amino acid insertion that destabilizes Nna1 protein

Loading next page...
 
/lp/springer_journal/the-purkinje-cell-degeneration-5j-mutation-is-a-single-amino-acid-iFPo6O4bk8
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Anatomy; Zoology; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-005-0096-x
Publisher site
See Article on Publisher Site

Abstract

In the mouse, Purkinje cell degeneration (pcd) is a recessive mutation characterized by degeneration of cerebellar Purkinje cells, retinal photoreceptors, olfactory bulb mitral neurons, and certain thalamic neurons, and is accompanied by defective spermatogenesis. Previous studies of pcd have led to the identification of Nna1 as the causal gene; however, how loss of Nna1 function results in neurodegeneration remains unresolved. One useful approach for establishing which functional domains of a protein underlie a recessive phenotype has been to determine the genetic basis of the various alleles at the locus of interest. Because none of the pcd alleles analyzed at the time of the identification of Nna1 provided insight into the molecular basis of Nna1 loss-of-function, we obtained a recent pcd remutation—pcd 5J , and after determining that its phenotype is comparable to existing pcd severe alleles, we sought its genetic basis by sequencing Nna1. In this article we report that pcd 5J results from the insertion of a single GAC triplet encoding an aspartic acid residue at position 775 of Nna1. Although this insertion does not affect Nna1 expression at the RNA level, Nna1 pcd-5J protein expression is markedly decreased. Pulse-chase experiments reveal that the aspartic acid insertion dramatically destabilizes Nna1 pcd-5J protein, accounting for the observation that pcd 5J is a severe allele. The presence of a readily detectable genetic mutation in pcd 5J confirms that Nna1 loss-of-function alone underlies the broad pcd phenotype and will facilitate further studies of how Nna1 loss-of-function produces neurodegeneration and defective spermatogenesis in pcd mice.

Journal

Mammalian GenomeSpringer Journals

Published: Feb 7, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off