The prqA and mvrA Genes Encoding Drug Efflux Proteins Control Resistance to Methyl Viologen in the Cyanobacterium Synechocystis sp. PCC 6803

The prqA and mvrA Genes Encoding Drug Efflux Proteins Control Resistance to Methyl Viologen in... Derivatives with insertional inactivation of prqA and mvrAgenes were obtained and studied in the Synechocystis sp. PCC 6803 wild-type strain and in the mutant Prq20 resistant to methyl viologen (MV). It was shown that the formation of resistance to MV is associated with the operation of two systems: constitutive and inducible. TheprqAgene encoding drug efflux protein controls the constitutive system of cell resistance to MV. Derepression of the prqA gene is the main reason for an enhanced MV resistance in the Prq20 mutant with impaired repressor function of the PrqR protein. The mvrA gene encoding the transmembrane protein from the family of transporters of sugar and other compounds controls the inducible MV resistance. It is assumed that the MvrA protein is required for efficient elimination from cells of toxic substances formed upon oxidative stress or participates in the repair of membranes destroyed by oxidants. The data obtained demonstrated for the first time that transport systems are involved in the development of MV resistance in photosynthetic organisms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

The prqA and mvrA Genes Encoding Drug Efflux Proteins Control Resistance to Methyl Viologen in the Cyanobacterium Synechocystis sp. PCC 6803

Loading next page...
 
/lp/springer_journal/the-prqa-and-mvra-genes-encoding-drug-efflux-proteins-control-mXTQn8rD1N
Publisher
Springer Journals
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/A:1023256608389
Publisher site
See Article on Publisher Site

Abstract

Derivatives with insertional inactivation of prqA and mvrAgenes were obtained and studied in the Synechocystis sp. PCC 6803 wild-type strain and in the mutant Prq20 resistant to methyl viologen (MV). It was shown that the formation of resistance to MV is associated with the operation of two systems: constitutive and inducible. TheprqAgene encoding drug efflux protein controls the constitutive system of cell resistance to MV. Derepression of the prqA gene is the main reason for an enhanced MV resistance in the Prq20 mutant with impaired repressor function of the PrqR protein. The mvrA gene encoding the transmembrane protein from the family of transporters of sugar and other compounds controls the inducible MV resistance. It is assumed that the MvrA protein is required for efficient elimination from cells of toxic substances formed upon oxidative stress or participates in the repair of membranes destroyed by oxidants. The data obtained demonstrated for the first time that transport systems are involved in the development of MV resistance in photosynthetic organisms.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off