The Propagation Characteristics of Radio Frequency Signals for Wireless Sensor Networks in Large-Scale Farmland

The Propagation Characteristics of Radio Frequency Signals for Wireless Sensor Networks in... For configuring wireless sensor network and deploying nodes, the propagation characteristics of wireless channel at frequency of 433 MHz and 2.4 GHz are investigated. Through the analysis of the received signal strength indicator (RSSI) and packet loss rate (PLR), we find that the RSSI (PLR) decreases (increases) as the transceiver nodes distance increases. It is also found that the path loss decreases with the antenna height increasing, and the path loss at 2.4 GHz is more serious than that at 433 MHz. Through the regression analysis in Matlab, we find that the optimal fitting model is the parametric exponential decay (OFPED) model, and the second-best is the linear logarithmic model. For OFPED model, the values of R2 vary from 0.9347 to 0.9893, and the values of root mean square error (RMSE) range from 0.7469 to 2.243 at frequency of 433 MHz; while at frequency of 2.4 GHz, the values of R2 change from 0.9612 to 0.9857, and the values of RMSE range from 1.375 to 3.181. Moreover, we make a comparison analysis with several modified exponential decay (MED) models, and the validation results show that the MED models can be used as conservative upper and lower bounds of path loss, at least for wheat field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

The Propagation Characteristics of Radio Frequency Signals for Wireless Sensor Networks in Large-Scale Farmland

Loading next page...
 
/lp/springer_journal/the-propagation-characteristics-of-radio-frequency-signals-for-V69XkRmYXM
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4018-5
Publisher site
See Article on Publisher Site

Abstract

For configuring wireless sensor network and deploying nodes, the propagation characteristics of wireless channel at frequency of 433 MHz and 2.4 GHz are investigated. Through the analysis of the received signal strength indicator (RSSI) and packet loss rate (PLR), we find that the RSSI (PLR) decreases (increases) as the transceiver nodes distance increases. It is also found that the path loss decreases with the antenna height increasing, and the path loss at 2.4 GHz is more serious than that at 433 MHz. Through the regression analysis in Matlab, we find that the optimal fitting model is the parametric exponential decay (OFPED) model, and the second-best is the linear logarithmic model. For OFPED model, the values of R2 vary from 0.9347 to 0.9893, and the values of root mean square error (RMSE) range from 0.7469 to 2.243 at frequency of 433 MHz; while at frequency of 2.4 GHz, the values of R2 change from 0.9612 to 0.9857, and the values of RMSE range from 1.375 to 3.181. Moreover, we make a comparison analysis with several modified exponential decay (MED) models, and the validation results show that the MED models can be used as conservative upper and lower bounds of path loss, at least for wheat field.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Feb 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off