The promotion effect of catalytic activity by Ru substitution at the B site of La1−x Sr x Cr1−y Ru y O3−z for propane steam reforming

The promotion effect of catalytic activity by Ru substitution at the B site of La1−x Sr x... A series of La1−x Sr x Cr1−y Ru y O3−δ (0.1 ≤ x ≤ 0.5, 0.05 ≤ y ≤ 0.15) materials was prepared by the sol–gel method to develop alternative catalysts for propane steam reforming. Catalyst characteristics were evaluated using physicochemical methods including X-ray diffraction, Brunauer–Emmett–Teller methods, H2 temperature-programmed reduction, and thermogravimetry analysis (TGA). Effects of the amount of ruthenium (Ru) and strontium and the steam-to-carbon ratio (S/C) were investigated. An increase in Ru content led to increased propane conversion and H2 yield, especially below 700 °C. Dramatic enhancement of catalytic activity was observed with La0.8Sr0.2Cr0.85Ru0.15O3 under 600 °C, achieving propane conversion over 79% between 600 and 800 °C with maximum propane conversion and H2 yield of 98.3% and 63.3%, respectively. Also, good resistance to carbon formation for the La0.8Sr0.2Cr0.85Ru0.15O3 catalyst was confirmed by long-term testing and TGA analysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

The promotion effect of catalytic activity by Ru substitution at the B site of La1−x Sr x Cr1−y Ru y O3−z for propane steam reforming

Loading next page...
 
/lp/springer_journal/the-promotion-effect-of-catalytic-activity-by-ru-substitution-at-the-b-9kzaFzLzng
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Physical Chemistry; Inorganic Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0399-3
Publisher site
See Article on Publisher Site

Abstract

A series of La1−x Sr x Cr1−y Ru y O3−δ (0.1 ≤ x ≤ 0.5, 0.05 ≤ y ≤ 0.15) materials was prepared by the sol–gel method to develop alternative catalysts for propane steam reforming. Catalyst characteristics were evaluated using physicochemical methods including X-ray diffraction, Brunauer–Emmett–Teller methods, H2 temperature-programmed reduction, and thermogravimetry analysis (TGA). Effects of the amount of ruthenium (Ru) and strontium and the steam-to-carbon ratio (S/C) were investigated. An increase in Ru content led to increased propane conversion and H2 yield, especially below 700 °C. Dramatic enhancement of catalytic activity was observed with La0.8Sr0.2Cr0.85Ru0.15O3 under 600 °C, achieving propane conversion over 79% between 600 and 800 °C with maximum propane conversion and H2 yield of 98.3% and 63.3%, respectively. Also, good resistance to carbon formation for the La0.8Sr0.2Cr0.85Ru0.15O3 catalyst was confirmed by long-term testing and TGA analysis.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 28, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off