The presence of an error term does not preclude causal inference in regression: a comment on Krause (2012)

The presence of an error term does not preclude causal inference in regression: a comment on... A recent article by Krause (Qual Quant, doi: 10.1007/s11135-012-9712-5 , Krause (2012)) maintains that: (1) it is untenable to characterize the error term in multiple regression as simply an extraneous random influence on the outcome variable, because any amount of error implies the possibility of one or more omitted, relevant explanatory variables; and (2) the only way to guarantee the prevention of omitted variable bias and thereby justify causal interpretations of estimated coefficients is to construct fully specified models that completely eliminate the error term. The present commentary argues that such an extreme position is impractical and unnecessary, given the availability of specialized techniques for dealing with the primary statistical consequence of omitted variables, namely endogeneity, or the existence of correlations between included explanatory variables and the error term. In particular, the current article discusses the method of instrumental variable estimation, which can resolve the endogeneity problem in causal models where one or more relevant explanatory variables are excluded, thus allowing for accurate estimation of effects. An overview of recent methodological resources and software for conducting instrumental variables estimation is provided, with the aim of helping to place this crucial technique squarely in the statistical toolkit of applied researchers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

The presence of an error term does not preclude causal inference in regression: a comment on Krause (2012)

Loading next page...
 
/lp/springer_journal/the-presence-of-an-error-term-does-not-preclude-causal-inference-in-BUAHoyL3p7
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Social Sciences, general; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-012-9763-7
Publisher site
See Article on Publisher Site

Abstract

A recent article by Krause (Qual Quant, doi: 10.1007/s11135-012-9712-5 , Krause (2012)) maintains that: (1) it is untenable to characterize the error term in multiple regression as simply an extraneous random influence on the outcome variable, because any amount of error implies the possibility of one or more omitted, relevant explanatory variables; and (2) the only way to guarantee the prevention of omitted variable bias and thereby justify causal interpretations of estimated coefficients is to construct fully specified models that completely eliminate the error term. The present commentary argues that such an extreme position is impractical and unnecessary, given the availability of specialized techniques for dealing with the primary statistical consequence of omitted variables, namely endogeneity, or the existence of correlations between included explanatory variables and the error term. In particular, the current article discusses the method of instrumental variable estimation, which can resolve the endogeneity problem in causal models where one or more relevant explanatory variables are excluded, thus allowing for accurate estimation of effects. An overview of recent methodological resources and software for conducting instrumental variables estimation is provided, with the aim of helping to place this crucial technique squarely in the statistical toolkit of applied researchers.

Journal

Quality & QuantitySpringer Journals

Published: Aug 25, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off