The potential of high spatial resolution information to define within-vineyard zones related to vine water status

The potential of high spatial resolution information to define within-vineyard zones related to... The goal of this study was to test the usefulness of high-spatial resolution information provided by airborne imagery and soil electrical properties to define plant water restriction zones within-vineyards. The main contribution of this is to propose a study on a large area representing the regions’ vineyard diversity (different age, different varieties and different soils) located in southern France (Languedoc-Roussillon region, France). Nine non-irrigated plots were selected for this work in 2006 and 2007. In each plot, different zones were defined using the high-spatial resolution (1 m2) information provided by airborne imagery (Normalised Difference Vegetation Index, NDVI). Within each zone, measurements were conducted to assess: (i) vine water status (Pre-dawn Leaf Water Potential, PLWP), (ii) vine vegetative expression (vine trunk circumference and canopy area), (iii) soil electrical resistivity and, (iv) harvest quantity and quality. Large differences were observed for vegetative expression, yield and plant water status between the individual NDVI-defined zones. Significant differences were also observed for soil resistivity and vine trunk circumference, suggesting the temporal stability of the zoning and its relevance to defining vine water status zones. The NDVI zoning could not be related to the observed differences in quality, thus showing the limitations in using this approach to assess grape quality under non-irrigated conditions. The paper concludes with the approach that is currently being considered: using NDVI zones (corresponding to plant water restriction zones) in association with soil electrical resistivity and plant water status measurements to provide an assessment of the spatial variability of grape production at harvest. Precision Agriculture Springer Journals

The potential of high spatial resolution information to define within-vineyard zones related to vine water status

Loading next page...
Springer US
Copyright © 2008 by Springer Science+Business Media, LLC
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial