The Polyphyletic Origins of Primase–Helicase Bifunctional Proteins

The Polyphyletic Origins of Primase–Helicase Bifunctional Proteins We studied the evolutionary relationships of different primase–helicase bifunctional proteins, found mostly in viruses, virophages, plasmids, and organellar genomes, by phylogeny and correlation analysis. Our study suggests independent origins of primase–helicase bifunctional proteins resulting from multiple fusion events between genes encoding primase and helicase domains of different families. The correlation analysis further indicated strong functional dependencies of domains in the bifunctional proteins that are part of smaller genomes and plasmids. Bifunctional proteins found in some bacterial genomes exhibited weak coevolution probably suggesting that these are the non-functional remnants of the proteins acquired via horizontal transfer. We have put forward possible scenarios for the origin of primase–helicase bifunctional proteins in large eukaryotic DNA viruses and virophages. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Evolution Springer Journals

The Polyphyletic Origins of Primase–Helicase Bifunctional Proteins

Loading next page...
 
/lp/springer_journal/the-polyphyletic-origins-of-primase-helicase-bifunctional-proteins-zUkKWWGXzD
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Life Sciences; Evolutionary Biology; Microbiology; Plant Sciences; Plant Genetics and Genomics; Animal Genetics and Genomics; Cell Biology
ISSN
0022-2844
eISSN
1432-1432
D.O.I.
10.1007/s00239-017-9816-6
Publisher site
See Article on Publisher Site

Abstract

We studied the evolutionary relationships of different primase–helicase bifunctional proteins, found mostly in viruses, virophages, plasmids, and organellar genomes, by phylogeny and correlation analysis. Our study suggests independent origins of primase–helicase bifunctional proteins resulting from multiple fusion events between genes encoding primase and helicase domains of different families. The correlation analysis further indicated strong functional dependencies of domains in the bifunctional proteins that are part of smaller genomes and plasmids. Bifunctional proteins found in some bacterial genomes exhibited weak coevolution probably suggesting that these are the non-functional remnants of the proteins acquired via horizontal transfer. We have put forward possible scenarios for the origin of primase–helicase bifunctional proteins in large eukaryotic DNA viruses and virophages.

Journal

Journal of Molecular EvolutionSpringer Journals

Published: Nov 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off