The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization

The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene... The chloroplast chromosome of spinach (Spinacia oleracea) is a double-stranded circular DNA molecule of 150 725 nucleotide pairs. A comparison of this chromosome with those of the three other autotrophic dicotyledons for which complete DNA sequences of plastid chromosomes are available confirms a conserved overall structure. Three classes of open reading frames were distinguished: (1) genes of known function which include 108 unique loci, (2) three hypothetical chloroplast reading frames (ycfs) that are highly conserved interspecifically, and (3) species-specific or rapidly diverging 'open reading frames'. A detailed transcript study of one of the latter (ycf15) shows that these loci may be transcribed, but do not constitute protein-coding genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization

Loading next page...
 
/lp/springer_journal/the-plastid-chromosome-of-spinach-spinacia-oleracea-complete-1WCFtNS3CL
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006478403810
Publisher site
See Article on Publisher Site

Abstract

The chloroplast chromosome of spinach (Spinacia oleracea) is a double-stranded circular DNA molecule of 150 725 nucleotide pairs. A comparison of this chromosome with those of the three other autotrophic dicotyledons for which complete DNA sequences of plastid chromosomes are available confirms a conserved overall structure. Three classes of open reading frames were distinguished: (1) genes of known function which include 108 unique loci, (2) three hypothetical chloroplast reading frames (ycfs) that are highly conserved interspecifically, and (3) species-specific or rapidly diverging 'open reading frames'. A detailed transcript study of one of the latter (ycf15) shows that these loci may be transcribed, but do not constitute protein-coding genes.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 4, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off