The photocatalytic properties of amorphous TiO2 composite films deposited by magnetron sputtering

The photocatalytic properties of amorphous TiO2 composite films deposited by magnetron sputtering The preparation of amorphous TiO2 film coupled with various metal-oxide semiconductors and their photocatalytic activities evaluated by photo-degradation of methylene blue and rhodamine B aqueous solution are briefly reviewed. The proposed photoreaction mechanism of the amorphous composite semiconductor and the differences between amorphous TiO2-based films and crystalline TiO2 photocatalytic materials in terms of preparation and usage are addressed. The inactive intrinsic amorphous TiO2 film coupled with various metal oxides were found to gain high photocatalytic activity. These dopants induce forming new energy levels in the band gap of TiO2 to enhance the charge separation of the photoinduced electrons and holes and extend the light absorption of TiO2-based photocatalytic films into the visible region. In addition, two different effects of coupling metal oxides have been proved: the introduction of oxides of W, Cr, V, Ag, and Mo can significantly increase the photo-reactivity of amorphous TiO2 film, while the combination of oxides of Zr, Sn, Sb, Cu, Ta, Fe, and Ni cannot affect the inactivity of pure amorphous TiO2 film. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

The photocatalytic properties of amorphous TiO2 composite films deposited by magnetron sputtering

Loading next page...
 
/lp/springer_journal/the-photocatalytic-properties-of-amorphous-tio2-composite-films-HaWNzlr00I
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0365-0
Publisher site
See Article on Publisher Site

Abstract

The preparation of amorphous TiO2 film coupled with various metal-oxide semiconductors and their photocatalytic activities evaluated by photo-degradation of methylene blue and rhodamine B aqueous solution are briefly reviewed. The proposed photoreaction mechanism of the amorphous composite semiconductor and the differences between amorphous TiO2-based films and crystalline TiO2 photocatalytic materials in terms of preparation and usage are addressed. The inactive intrinsic amorphous TiO2 film coupled with various metal oxides were found to gain high photocatalytic activity. These dopants induce forming new energy levels in the band gap of TiO2 to enhance the charge separation of the photoinduced electrons and holes and extend the light absorption of TiO2-based photocatalytic films into the visible region. In addition, two different effects of coupling metal oxides have been proved: the introduction of oxides of W, Cr, V, Ag, and Mo can significantly increase the photo-reactivity of amorphous TiO2 film, while the combination of oxides of Zr, Sn, Sb, Cu, Ta, Fe, and Ni cannot affect the inactivity of pure amorphous TiO2 film.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 7, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off