The persistence and photostabilizing characteristics of benzotriazole and 5-methyl-1H-benzotriazole reduce the photochemical behavior of common photosensitizers and organic compounds in aqueous environments

The persistence and photostabilizing characteristics of benzotriazole and... Benzotriazole (BT) and 5-methyl-1H-benzotriazole (5-MeBT) are broadly used in industrial applications, such as anti-icing fluids and dishwashing detergent, and act as the primary building blocks for UV absorbers and photostabilizers. This study examined the occurrence of these two compounds in the environment and their unique photochemical behavior affecting photosensitizers and other micro-organic pollutants in aqueous environments. BT and 5-MeBT were detected in all river water samples from the major rivers in Taipei City in the concentration ranges of 147 to 1560 ng/L and 22 to 235 ng/L, respectively, and both compounds persisted through a conventional wastewater treatment plant. The direct photolysis half-lives of BT and 5-MeBT were 56.9 and 14.0 h, respectively. The half-life of photolysis in river water for BT was 44.2 h, whereas the half-life of 5-MeBT was 24.7 h. The long half-lives in real-water matrices resulted in their prevalence in water bodies, and these compounds were also found to minimize the photosensitizing ability of nitrate and dissolved organic matter (DOM) and increase the persistence of other micro-organic pollutant. With BT present, the production of ·OH in nitrate photolysis was reduced, the degradation of DOM under sunlight was hindered, and the photodegradation of pharmaceutical residues in surface water, such as methotrexate, was completely impeded. This study suggests that in cases in which BT and 5-MeBT are highly concentrated, the effectiveness of natural attenuation process, i.e., photodegradation, in the aqueous environment is diminished, which increases the persistence of the pollutants as well as the risk of exposure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

The persistence and photostabilizing characteristics of benzotriazole and 5-methyl-1H-benzotriazole reduce the photochemical behavior of common photosensitizers and organic compounds in aqueous environments

Loading next page...
 
/lp/springer_journal/the-persistence-and-photostabilizing-characteristics-of-benzotriazole-5s1eyJSmeX
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0900-7
Publisher site
See Article on Publisher Site

Abstract

Benzotriazole (BT) and 5-methyl-1H-benzotriazole (5-MeBT) are broadly used in industrial applications, such as anti-icing fluids and dishwashing detergent, and act as the primary building blocks for UV absorbers and photostabilizers. This study examined the occurrence of these two compounds in the environment and their unique photochemical behavior affecting photosensitizers and other micro-organic pollutants in aqueous environments. BT and 5-MeBT were detected in all river water samples from the major rivers in Taipei City in the concentration ranges of 147 to 1560 ng/L and 22 to 235 ng/L, respectively, and both compounds persisted through a conventional wastewater treatment plant. The direct photolysis half-lives of BT and 5-MeBT were 56.9 and 14.0 h, respectively. The half-life of photolysis in river water for BT was 44.2 h, whereas the half-life of 5-MeBT was 24.7 h. The long half-lives in real-water matrices resulted in their prevalence in water bodies, and these compounds were also found to minimize the photosensitizing ability of nitrate and dissolved organic matter (DOM) and increase the persistence of other micro-organic pollutant. With BT present, the production of ·OH in nitrate photolysis was reduced, the degradation of DOM under sunlight was hindered, and the photodegradation of pharmaceutical residues in surface water, such as methotrexate, was completely impeded. This study suggests that in cases in which BT and 5-MeBT are highly concentrated, the effectiveness of natural attenuation process, i.e., photodegradation, in the aqueous environment is diminished, which increases the persistence of the pollutants as well as the risk of exposure.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Dec 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off