The peculiar cluster MACS J0417.5-1154 in the C and X-bands

The peculiar cluster MACS J0417.5-1154 in the C and X-bands We present 5.5 and 9.0 GHz Australia Telescope Compact Array (ATCA) observations of the cluster MACSJ0417.5-1154, one of the most massive galaxy clusters and one of the brightest in X-ray in the Massive Cluster Survey (MACS). We estimate diffuse emission at 5.5 and 9.0 GHz from our ATCA observations, and compare the results with the 235 MHz and 610 MHz GMRT observations and 1575 MHz VLA observations. We also estimate the diffuse emission at low frequencies from existing GLEAM survey data (using the MWA telescope ( http://www.mwatelescope.org )), and find that the steepening reported in earlier studies may have been an artefact of underestimates of diffuse emission at low frequencies. High-frequency radio observations of galaxy cluster mergers therefore provide an important complement to low-frequency observations, not only for a probing the ‘on’ and ‘off’ state of radio halos in these mergers, but also to constrain energetics of cluster mergers. We comment on the future directions that further studies of this cluster can take. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Astrophysics and Space Science Springer Journals

The peculiar cluster MACS J0417.5-1154 in the C and X-bands

Loading next page...
 
/lp/springer_journal/the-peculiar-cluster-macs-j0417-5-1154-in-the-c-and-x-bands-m5sEVYPnsg
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Physics; Astrophysics and Astroparticles; Astronomy, Observations and Techniques; Cosmology; Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics) ; Astrobiology
ISSN
0004-640X
eISSN
1572-946X
D.O.I.
10.1007/s10509-018-3354-6
Publisher site
See Article on Publisher Site

Abstract

We present 5.5 and 9.0 GHz Australia Telescope Compact Array (ATCA) observations of the cluster MACSJ0417.5-1154, one of the most massive galaxy clusters and one of the brightest in X-ray in the Massive Cluster Survey (MACS). We estimate diffuse emission at 5.5 and 9.0 GHz from our ATCA observations, and compare the results with the 235 MHz and 610 MHz GMRT observations and 1575 MHz VLA observations. We also estimate the diffuse emission at low frequencies from existing GLEAM survey data (using the MWA telescope ( http://www.mwatelescope.org )), and find that the steepening reported in earlier studies may have been an artefact of underestimates of diffuse emission at low frequencies. High-frequency radio observations of galaxy cluster mergers therefore provide an important complement to low-frequency observations, not only for a probing the ‘on’ and ‘off’ state of radio halos in these mergers, but also to constrain energetics of cluster mergers. We comment on the future directions that further studies of this cluster can take.

Journal

Astrophysics and Space ScienceSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off