The Pathogenic A391E Mutation in FGFR3 Induces a Structural Change in the Transmembrane Domain Dimer

The Pathogenic A391E Mutation in FGFR3 Induces a Structural Change in the Transmembrane Domain Dimer Fibroblast growth factor receptor 3 (FGFR3) is a single-pass membrane protein and a member of the receptor tyrosine kinase family of proteins that is involved in the regulation of skeletal growth and development. FGFR3 has three distinct domains: the ligand binding extracellular domain, the cytosolic kinase domain and the transmembrane domain (TMD). Previous work with the isolated FGFR3 TMD has shown that it has the ability to dimerize. Clinical and genetic studies have also correlated mutations in the TMD with a variety of skeletal and cranial dysplasias and cancer. Although the structures of the extracellular and cytosolic domains of FGFR3 have been solved, the structure of the TMD dimer is still unknown. Furthermore, very little is known regarding the effects of pathogenic mutations on the TMD dimer structure. We, therefore, carried out ToxR activity assays to determine the role of the SmXXXSm motif in the dimerization of the FGFR3 TMD. This motif has been shown to drive the association of many transmembrane proteins. Our results indicate that the interaction between wild-type FGFR3 TMDs is not mediated by two adjacent SmXXXSm motifs. In contrast, studies using the TMD carrying the pathogenic A391E mutation suggest that the motifs play a role in the dimerization of the mutant TMD. Based on these observations, here we report a new mechanistic model in which the pathogenic A391E mutation induces a structural change that leads to the formation of a more stable dimer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Pathogenic A391E Mutation in FGFR3 Induces a Structural Change in the Transmembrane Domain Dimer

Loading next page...
 
/lp/springer_journal/the-pathogenic-a391e-mutation-in-fgfr3-induces-a-structural-change-in-iEsU6QaHyt
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-013-9563-6
Publisher site
See Article on Publisher Site

Abstract

Fibroblast growth factor receptor 3 (FGFR3) is a single-pass membrane protein and a member of the receptor tyrosine kinase family of proteins that is involved in the regulation of skeletal growth and development. FGFR3 has three distinct domains: the ligand binding extracellular domain, the cytosolic kinase domain and the transmembrane domain (TMD). Previous work with the isolated FGFR3 TMD has shown that it has the ability to dimerize. Clinical and genetic studies have also correlated mutations in the TMD with a variety of skeletal and cranial dysplasias and cancer. Although the structures of the extracellular and cytosolic domains of FGFR3 have been solved, the structure of the TMD dimer is still unknown. Furthermore, very little is known regarding the effects of pathogenic mutations on the TMD dimer structure. We, therefore, carried out ToxR activity assays to determine the role of the SmXXXSm motif in the dimerization of the FGFR3 TMD. This motif has been shown to drive the association of many transmembrane proteins. Our results indicate that the interaction between wild-type FGFR3 TMDs is not mediated by two adjacent SmXXXSm motifs. In contrast, studies using the TMD carrying the pathogenic A391E mutation suggest that the motifs play a role in the dimerization of the mutant TMD. Based on these observations, here we report a new mechanistic model in which the pathogenic A391E mutation induces a structural change that leads to the formation of a more stable dimer.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jun 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off