The Parameterized Space Complexity of Embedding Along a Path

The Parameterized Space Complexity of Embedding Along a Path The embedding problem is to decide, given an ordered pair of structures, whether or not there is an injective homomorphism from the first structure to the second. We study this problem using an established perspective in parameterized complexity theory: the universe size of the first structure is taken to be the parameter, and we define the embedding problem relative to a class 𝓐 ${\mathcal {A}}$ of structures to be the restricted version of the general problem where the first structure must come from 𝓐 ${\mathcal {A}}$ . We initiate a systematic complexity study of this problem family, by considering classes whose structures are what we call rooted path structures; these structures have paths as Gaifman graphs. Our main theorem is a dichotomy theorem on classes of rooted path structures. Theory of Computing Systems Springer Journals

The Parameterized Space Complexity of Embedding Along a Path

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Computer Science; Theory of Computation
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial