The Outer Membrane Protein VhOmp of Vibrio harveyi: Pore-Forming Properties in Black Lipid Membranes

The Outer Membrane Protein VhOmp of Vibrio harveyi: Pore-Forming Properties in Black Lipid Membranes Vibrio harveyi is known to cause fatal vibriosis in marine animals. Here, an outer membrane protein from V. harveyi, namely, VhOmp, was isolated and functionally characterized in terms of pore-forming contact with artificial lipid membranes. The native VhOmp exists as a trimer of a molecular weight similar to that of the porin OmpF from Escherichia coli. Reconstitution of VhOmp into black lipid membranes demonstrated its ability to form ion channels. The average pore conductance of VhOmp was revealed to be about 0.9 and 2 nS in 0.2 and 1 M KCl, respectively. Within transmembrane potentials of ±100 mV, VhOmp pores behaved as ohmic conduits, and their conductance scaled linearly with voltage. Nonlinear plots of the pore conductance versus symmetrical salt concentrations at either side of the protein-incorporating membrane suggested the influence of interior channel functionalities on the passage of charged species. In the presence of Omp-specific polyclonal antibodies, the pore-forming property of VhOmp was modulated so that the usual step-like current increments were replaced by random transitory current fluctuations. VhOmp exhibited a strong biological activity by causing hemolysis of human red blood cells, indicating that VhOmp may act as a crucial determinant during bacterial infection to animal host cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Outer Membrane Protein VhOmp of Vibrio harveyi: Pore-Forming Properties in Black Lipid Membranes

Loading next page...
 
/lp/springer_journal/the-outer-membrane-protein-vhomp-of-vibrio-harveyi-pore-forming-G4qX4rfo0c
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-009-9194-0
Publisher site
See Article on Publisher Site

Abstract

Vibrio harveyi is known to cause fatal vibriosis in marine animals. Here, an outer membrane protein from V. harveyi, namely, VhOmp, was isolated and functionally characterized in terms of pore-forming contact with artificial lipid membranes. The native VhOmp exists as a trimer of a molecular weight similar to that of the porin OmpF from Escherichia coli. Reconstitution of VhOmp into black lipid membranes demonstrated its ability to form ion channels. The average pore conductance of VhOmp was revealed to be about 0.9 and 2 nS in 0.2 and 1 M KCl, respectively. Within transmembrane potentials of ±100 mV, VhOmp pores behaved as ohmic conduits, and their conductance scaled linearly with voltage. Nonlinear plots of the pore conductance versus symmetrical salt concentrations at either side of the protein-incorporating membrane suggested the influence of interior channel functionalities on the passage of charged species. In the presence of Omp-specific polyclonal antibodies, the pore-forming property of VhOmp was modulated so that the usual step-like current increments were replaced by random transitory current fluctuations. VhOmp exhibited a strong biological activity by causing hemolysis of human red blood cells, indicating that VhOmp may act as a crucial determinant during bacterial infection to animal host cells.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Aug 13, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off