The optimal sequenced route query

The optimal sequenced route query Real-world road-planning applications often result in the formulation of new variations of the nearest neighbor (NN) problem requiring new solutions. In this paper, we study an unexplored form of NN queries named optimal sequenced route (OSR) query in both vector and metric spaces. OSR strives to find a route of minimum length starting from a given source location and passing through a number of typed locations in a particular order imposed on the types of the locations. We first transform the OSR problem into a shortest path problem on a large planar graph. We show that a classic shortest path algorithm such as Dijkstra’s is impractical for most real-world scenarios. Therefore, we propose LORD, a light threshold-based iterative algorithm, which utilizes various thresholds to prune the locations that cannot belong to the optimal route. Then we propose R-LORD, an extension of LORD which uses R-tree to examine the threshold values more efficiently. Finally, for applications that cannot tolerate the Euclidean distance as estimation and require exact distance measures in metric spaces (e.g., road networks) we propose PNE that progressively issues NN queries on different point types to construct the optimal route for the OSR query. Our extensive experiments on both real-world and synthetic datasets verify that our algorithms significantly outperform a disk-based variation of the Dijkstra approach in terms of processing time (up to two orders of magnitude) and required workspace (up to 90% reduction on average). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

The optimal sequenced route query

Loading next page...
 
/lp/springer_journal/the-optimal-sequenced-route-query-CZ0bUm74fM
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-006-0038-6
Publisher site
See Article on Publisher Site

Abstract

Real-world road-planning applications often result in the formulation of new variations of the nearest neighbor (NN) problem requiring new solutions. In this paper, we study an unexplored form of NN queries named optimal sequenced route (OSR) query in both vector and metric spaces. OSR strives to find a route of minimum length starting from a given source location and passing through a number of typed locations in a particular order imposed on the types of the locations. We first transform the OSR problem into a shortest path problem on a large planar graph. We show that a classic shortest path algorithm such as Dijkstra’s is impractical for most real-world scenarios. Therefore, we propose LORD, a light threshold-based iterative algorithm, which utilizes various thresholds to prune the locations that cannot belong to the optimal route. Then we propose R-LORD, an extension of LORD which uses R-tree to examine the threshold values more efficiently. Finally, for applications that cannot tolerate the Euclidean distance as estimation and require exact distance measures in metric spaces (e.g., road networks) we propose PNE that progressively issues NN queries on different point types to construct the optimal route for the OSR query. Our extensive experiments on both real-world and synthetic datasets verify that our algorithms significantly outperform a disk-based variation of the Dijkstra approach in terms of processing time (up to two orders of magnitude) and required workspace (up to 90% reduction on average).

Journal

The VLDB JournalSpringer Journals

Published: Jul 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off