The Numerical Analysis of Fault-Induced Mine Water Inrush Using the Extended Finite Element Method and Fracture Mechanics

The Numerical Analysis of Fault-Induced Mine Water Inrush Using the Extended Finite Element... Fault activation caused by construction, earthquakes, or mining can produce disastrous water-inrush episodes in underground mines. Fault activation is generally caused by stress concentration at the fault tip, so in this study, a computational model of a typical underground stope with a hidden fault was established to quantitatively assess the magnitude of the stress concentration of the stress fields of the fault-tip. Numerical simulation was performed using the extended finite element method and fracture mechanics. Stress intensity factors, which represent the magnitude of the stress concentration, were obtained using the interaction integral method to quantitatively evaluate the tip fields and assess the possibility of fault activation. The mining depth, fluid pressure, fault dip, and fault length were analyzed and the advance of a working face was simulated to determine whether underground mining would cause fault activation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mine Water and the Environment Springer Journals

The Numerical Analysis of Fault-Induced Mine Water Inrush Using the Extended Finite Element Method and Fracture Mechanics

Loading next page...
 
/lp/springer_journal/the-numerical-analysis-of-fault-induced-mine-water-inrush-using-the-gk1Ntdied0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geology; Water Quality/Water Pollution; Hydrogeology; Mineral Resources; Ecotoxicology; Industrial Pollution Prevention
ISSN
1025-9112
eISSN
1616-1068
D.O.I.
10.1007/s10230-017-0461-5
Publisher site
See Article on Publisher Site

Abstract

Fault activation caused by construction, earthquakes, or mining can produce disastrous water-inrush episodes in underground mines. Fault activation is generally caused by stress concentration at the fault tip, so in this study, a computational model of a typical underground stope with a hidden fault was established to quantitatively assess the magnitude of the stress concentration of the stress fields of the fault-tip. Numerical simulation was performed using the extended finite element method and fracture mechanics. Stress intensity factors, which represent the magnitude of the stress concentration, were obtained using the interaction integral method to quantitatively evaluate the tip fields and assess the possibility of fault activation. The mining depth, fluid pressure, fault dip, and fault length were analyzed and the advance of a working face was simulated to determine whether underground mining would cause fault activation.

Journal

Mine Water and the EnvironmentSpringer Journals

Published: Jun 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off