The nonlinear effects of the eddy viscosity and the bottom friction on the Lagrangian residual velocity in a narrow model bay

The nonlinear effects of the eddy viscosity and the bottom friction on the Lagrangian residual... The nonlinear effects of the eddy viscosity and the bottom friction on the Lagrangian residual velocity (LRV) are studied numerically in a narrow model bay. Three groups of the experiments with different eddy viscosity and different forms of the bottom friction are designed and are carried out in the three kinds of the topography. When the eddy viscosity is obtained from a two-equation turbulence closure model, the pattern of the LRV is more complex than that of the time invariant eddy viscosity case and the intensity is from more than 1.3 times to one order smaller than that of the linear eddy viscosity condition. The LRV are also acquired when the eddy viscosity varies from the flood-averaged one to the ebb-averaged one. It is found that when the flood-averaged eddy viscosity is bigger than the ebb-averaged eddy viscosity (flood-dominated asymmetry), the direction of the breadth-averaged LRV and the 3D LRV is nearly opposite to that when the eddy viscosity asymmetry is reverse (ebb-dominated asymmetry). However, the intensity of the LRV for the ebb-dominated case decreases toward the flood-dominated case as the ratio of the maximum depth in the deep channel and the minimum depth on the shoal increases. The different forms of the bottom friction also play a role in the LRV. The structures of the 3D LRV and the depth-integrated LRV are simpler, and the intensity of the LRV is two times smaller when the linear bottom friction is used than those when the quadratic bottom friction is used. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ocean Dynamics Springer Journals

The nonlinear effects of the eddy viscosity and the bottom friction on the Lagrangian residual velocity in a narrow model bay

Loading next page...
 
/lp/springer_journal/the-nonlinear-effects-of-the-eddy-viscosity-and-the-bottom-friction-on-UhvIJgojgz
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Oceanography; Geophysics/Geodesy; Atmospheric Sciences; Fluid- and Aerodynamics; Monitoring/Environmental Analysis
ISSN
1616-7341
eISSN
1616-7228
D.O.I.
10.1007/s10236-017-1076-x
Publisher site
See Article on Publisher Site

Abstract

The nonlinear effects of the eddy viscosity and the bottom friction on the Lagrangian residual velocity (LRV) are studied numerically in a narrow model bay. Three groups of the experiments with different eddy viscosity and different forms of the bottom friction are designed and are carried out in the three kinds of the topography. When the eddy viscosity is obtained from a two-equation turbulence closure model, the pattern of the LRV is more complex than that of the time invariant eddy viscosity case and the intensity is from more than 1.3 times to one order smaller than that of the linear eddy viscosity condition. The LRV are also acquired when the eddy viscosity varies from the flood-averaged one to the ebb-averaged one. It is found that when the flood-averaged eddy viscosity is bigger than the ebb-averaged eddy viscosity (flood-dominated asymmetry), the direction of the breadth-averaged LRV and the 3D LRV is nearly opposite to that when the eddy viscosity asymmetry is reverse (ebb-dominated asymmetry). However, the intensity of the LRV for the ebb-dominated case decreases toward the flood-dominated case as the ratio of the maximum depth in the deep channel and the minimum depth on the shoal increases. The different forms of the bottom friction also play a role in the LRV. The structures of the 3D LRV and the depth-integrated LRV are simpler, and the intensity of the LRV is two times smaller when the linear bottom friction is used than those when the quadratic bottom friction is used.

Journal

Ocean DynamicsSpringer Journals

Published: Jun 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off