The New Permeability Pathways Induced by the Malaria Parasite in the Membrane of the Infected Erythrocyte: Comparison of Results Using Different Experimental Techniques

The New Permeability Pathways Induced by the Malaria Parasite in the Membrane of the Infected... The membrane of erythrocytes infected with malaria parasites is highly permeable to a large variety of solutes, including anions, carbohydrates, amino acids, nucleosides, organic and inorganic cations and small peptides. The altered permeability is presumed to be due to the activation of endogenous dormant channels, the new permeability pathways. The latter have been studied by different techniques—isosmotic lysis and tracer fluxes—and recently by patch-clamping. Here we analyze all available published data and we show that there is generally a good agreement between the two first methods. From the fluxes we calculate the number of channels per cell using reasonable assumptions as to the radius of the channel, and assuming that penetration through the channel is by diffusion through a water-filled space. The number of channels so calculated is <10 for most solutes, but ~400 for anions and the nucleosides thymidine and adenosine. This latter number is not far from that calculated from patch-clamp experiments. However, the anion flux measured directly by tracer is an order of magnitude larger than expected from conductance measurements. We conclude that the new permeability pathways consist of two types of channels; one is present in small number, and is charge- and size-selective. The other type is about 100-fold more abundant and is anion-selective, but does not admit non-electrolytes other than perhaps nucleosides. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The New Permeability Pathways Induced by the Malaria Parasite in the Membrane of the Infected Erythrocyte: Comparison of Results Using Different Experimental Techniques

Loading next page...
 
/lp/springer_journal/the-new-permeability-pathways-induced-by-the-malaria-parasite-in-the-Y4N01pLYEh
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-003-0646-7
Publisher site
See Article on Publisher Site

Abstract

The membrane of erythrocytes infected with malaria parasites is highly permeable to a large variety of solutes, including anions, carbohydrates, amino acids, nucleosides, organic and inorganic cations and small peptides. The altered permeability is presumed to be due to the activation of endogenous dormant channels, the new permeability pathways. The latter have been studied by different techniques—isosmotic lysis and tracer fluxes—and recently by patch-clamping. Here we analyze all available published data and we show that there is generally a good agreement between the two first methods. From the fluxes we calculate the number of channels per cell using reasonable assumptions as to the radius of the channel, and assuming that penetration through the channel is by diffusion through a water-filled space. The number of channels so calculated is <10 for most solutes, but ~400 for anions and the nucleosides thymidine and adenosine. This latter number is not far from that calculated from patch-clamp experiments. However, the anion flux measured directly by tracer is an order of magnitude larger than expected from conductance measurements. We conclude that the new permeability pathways consist of two types of channels; one is present in small number, and is charge- and size-selective. The other type is about 100-fold more abundant and is anion-selective, but does not admit non-electrolytes other than perhaps nucleosides.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off