The new forms of Voronovskaya’s theorem in weighted spaces

The new forms of Voronovskaya’s theorem in weighted spaces The Voronovskaya theorem which is one of the most important pointwise convergence results in the theory of approximation by linear positive operators (l.p.o) is considered in quantitative form. Most of the results presented in this paper mainly depend on the Taylor’s formula for the functions belonging to weighted spaces. We first obtain an estimate for the remainder of Taylor’s formula and by this estimate we give the Voronovskaya theorem in quantitative form for a class of sequences of l.p.o. The Grüss type approximation theorem and the Grüss-Voronovskaya-type theorem in quantitative form are obtained as well. We also give the Voronovskaya type results for the difference of l.p.o acting on weighted spaces. All results are also given for well-known operators, Szasz-Mirakyan and Baskakov operators as illustrative examples. Our results being Voronovskaya-type either describe the rate of pointwise convergence or present the error of approximation simultaneously. Positivity Springer Journals

The new forms of Voronovskaya’s theorem in weighted spaces

Loading next page...
Springer International Publishing
Copyright © 2015 by Springer Basel
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
Publisher site
See Article on Publisher Site


  • On generalized Voronovskaja theorem for Bernstein polynomials
    Finta, Z
  • General Voronovskaya and asymptotic theorems in simultaneous approximation
    Gonska, H; Păltănea, R

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial