The new forms of Voronovskaya’s theorem in weighted spaces

The new forms of Voronovskaya’s theorem in weighted spaces The Voronovskaya theorem which is one of the most important pointwise convergence results in the theory of approximation by linear positive operators (l.p.o) is considered in quantitative form. Most of the results presented in this paper mainly depend on the Taylor’s formula for the functions belonging to weighted spaces. We first obtain an estimate for the remainder of Taylor’s formula and by this estimate we give the Voronovskaya theorem in quantitative form for a class of sequences of l.p.o. The Grüss type approximation theorem and the Grüss-Voronovskaya-type theorem in quantitative form are obtained as well. We also give the Voronovskaya type results for the difference of l.p.o acting on weighted spaces. All results are also given for well-known operators, Szasz-Mirakyan and Baskakov operators as illustrative examples. Our results being Voronovskaya-type either describe the rate of pointwise convergence or present the error of approximation simultaneously. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

The new forms of Voronovskaya’s theorem in weighted spaces

Loading next page...
 
/lp/springer_journal/the-new-forms-of-voronovskaya-s-theorem-in-weighted-spaces-FciaQ2dmYg
Publisher
Springer International Publishing
Copyright
Copyright © 2015 by Springer Basel
Subject
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1007/s11117-015-0338-4
Publisher site
See Article on Publisher Site

Abstract

The Voronovskaya theorem which is one of the most important pointwise convergence results in the theory of approximation by linear positive operators (l.p.o) is considered in quantitative form. Most of the results presented in this paper mainly depend on the Taylor’s formula for the functions belonging to weighted spaces. We first obtain an estimate for the remainder of Taylor’s formula and by this estimate we give the Voronovskaya theorem in quantitative form for a class of sequences of l.p.o. The Grüss type approximation theorem and the Grüss-Voronovskaya-type theorem in quantitative form are obtained as well. We also give the Voronovskaya type results for the difference of l.p.o acting on weighted spaces. All results are also given for well-known operators, Szasz-Mirakyan and Baskakov operators as illustrative examples. Our results being Voronovskaya-type either describe the rate of pointwise convergence or present the error of approximation simultaneously.

Journal

PositivitySpringer Journals

Published: May 8, 2015

References

  • On generalized Voronovskaja theorem for Bernstein polynomials
    Finta, Z
  • General Voronovskaya and asymptotic theorems in simultaneous approximation
    Gonska, H; Păltănea, R

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off