The mouse homolog of PKD1: Sequence analysis and alternative splicing

The mouse homolog of PKD1: Sequence analysis and alternative splicing We have cloned and sequenced the mouse transcript homologous to human polycystic kidney disease 1 (PKD1). The predicted protein is 79% identical to human PKD1 and shows the presence of most of the domains identified in the human sequence. Since the mouse homolog is transcribed from a unique gene and there are no transcribed, closely related copies as has been observed for human PKD1, we have been able to investigate alternative splicing of the transcript. At the junction of exons 12 and 13, several different splicing variants lead to a predicted protein that would be secreted. These forms are predominantly found in newborn brain, while in kidney the transcript homologous to the previously described human RNA predominates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

The mouse homolog of PKD1: Sequence analysis and alternative splicing

Loading next page...
 
/lp/springer_journal/the-mouse-homolog-of-pkd1-sequence-analysis-and-alternative-splicing-bT7WS0Kcta
Publisher
Springer-Verlag
Copyright
Copyright © 1997 by Springer-Verlag
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359900429
Publisher site
See Article on Publisher Site

Abstract

We have cloned and sequenced the mouse transcript homologous to human polycystic kidney disease 1 (PKD1). The predicted protein is 79% identical to human PKD1 and shows the presence of most of the domains identified in the human sequence. Since the mouse homolog is transcribed from a unique gene and there are no transcribed, closely related copies as has been observed for human PKD1, we have been able to investigate alternative splicing of the transcript. At the junction of exons 12 and 13, several different splicing variants lead to a predicted protein that would be secreted. These forms are predominantly found in newborn brain, while in kidney the transcript homologous to the previously described human RNA predominates.

Journal

Mammalian GenomeSpringer Journals

Published: Mar 21, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off