The microwave absorbing properties of CoFe2 attached single walled carbon nanotube/BaFe12O19 nanocomposites

The microwave absorbing properties of CoFe2 attached single walled carbon nanotube/BaFe12O19... The CoFe2 attached single-walled carbon nanotubes (CoFe2@SWCNTs) and BaFe12O19 ferrite nanocomposites with different CoFe2@SWCNTs weight ratios (1, 3, 5, 7 wt%) were synthesized by a simple combination process. Then, the electromagnetic and microwave absorption properties were systematically investigated by a vector network analyzer in the frequency range of 2–18 GHz. High-quality CoFe2@SWCNTs were prepared by a direct current arc discharge method in one-step. BaFe12O19 nanocrystals were synthesized by a nitrate citric acid sol–gel auto-ignition method. The CoFe2@SWCNT/BaFe12O19 nanocomposites exhibited an efficient reflection loss (RL) and a wide absorption bandwidth. The minimum RL of −54.13 dB was observed at 11.84 GHz for the nanocomposite (5 wt% CoFe2@SWCNTs) with a thickness of 2.8 mm, 3.4 times greater than those without CoFe2@SWCNTs, and a broad absorption bandwidth of 4.64 GHz (<−10 dB) was achieved. In addition, the nanocomposite (1 wt% CoFe2@SWCNTs) shows a broader effective microwave absorption bandwidth of 7.12 GHz with a thickness of 1.9 mm. The experimental results reveal that the absorbing properties of the nanocomposites are greatly improved by controlling the CoFe2@SWCNTs weight ratio and the matching thickness of the absorber. This CoFe2@SWCNT/BaFe12O19 nanocomposite is anticipated to be applied in advanced microwave absorbers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

The microwave absorbing properties of CoFe2 attached single walled carbon nanotube/BaFe12O19 nanocomposites

Loading next page...
 
/lp/springer_journal/the-microwave-absorbing-properties-of-cofe2-attached-single-walled-3VIgySMfGd
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-7069-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial