The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice

The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal... While Arabidopsis bears only one MET1 gene encoding the DNA methyltransferase that is mainly responsible for maintaining CG methylation after DNA replication, rice carries two MET1 genes, MET1a and MET1b, expressed in actively replicating and dividing cells, and MET1b is more abundantly expressed than is MET1a. A met1a null mutant displayed no overt phenotypes, implying that MET1b must play a major role in the maintenance DNA methylation. Here, we employed two met1b null mutants, generated by homologous recombination-mediated knock-in targeting and insertion of endogenous retrotransposon Tos17. These MET1a/MET1a met1b/met1b homozygotes exhibited abnormal seed phenotypes, which is associated with either viviparous germination or early embryonic lethality. They also displayed decreased levels of DNA methylation at repetitive CentO sequences and at the FIE1 gene locus in the embryos. In addition, independently isolated knock-in-targeted plants, in which the promoterless GUS reporter gene was fused with the endogenous MET1b promoter, showed the reproducible, dosage-dependent, and spatiotemporal expression patterns of GUS. The genotyping analysis of selfed progeny of heterozygous met1a met1b null mutants indicated that weakly active MET1a seems to serve as a genetic backup mechanism in rice met1b gametophytes, although the stochastic and uncoordinated activation of epigenetic backup mechanisms occurred less efficiently in the met1b homozygotes of rice than in the met1 homozygotes of Arabidopsis. Moreover, passive depletion of CG methylation during the postmeiotic DNA replication in the haploid nuclei of the met1a met1b gametophytes in rice results in early embryonic lethality. This situation somewhat resembles that of the met1 gametophytes in Arabidopsis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice

Loading next page...
 
/lp/springer_journal/the-met1b-gene-encoding-a-maintenance-dna-methyltransferase-is-r6VEA76VZs
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-014-0178-9
Publisher site
See Article on Publisher Site

Abstract

While Arabidopsis bears only one MET1 gene encoding the DNA methyltransferase that is mainly responsible for maintaining CG methylation after DNA replication, rice carries two MET1 genes, MET1a and MET1b, expressed in actively replicating and dividing cells, and MET1b is more abundantly expressed than is MET1a. A met1a null mutant displayed no overt phenotypes, implying that MET1b must play a major role in the maintenance DNA methylation. Here, we employed two met1b null mutants, generated by homologous recombination-mediated knock-in targeting and insertion of endogenous retrotransposon Tos17. These MET1a/MET1a met1b/met1b homozygotes exhibited abnormal seed phenotypes, which is associated with either viviparous germination or early embryonic lethality. They also displayed decreased levels of DNA methylation at repetitive CentO sequences and at the FIE1 gene locus in the embryos. In addition, independently isolated knock-in-targeted plants, in which the promoterless GUS reporter gene was fused with the endogenous MET1b promoter, showed the reproducible, dosage-dependent, and spatiotemporal expression patterns of GUS. The genotyping analysis of selfed progeny of heterozygous met1a met1b null mutants indicated that weakly active MET1a seems to serve as a genetic backup mechanism in rice met1b gametophytes, although the stochastic and uncoordinated activation of epigenetic backup mechanisms occurred less efficiently in the met1b homozygotes of rice than in the met1 homozygotes of Arabidopsis. Moreover, passive depletion of CG methylation during the postmeiotic DNA replication in the haploid nuclei of the met1a met1b gametophytes in rice results in early embryonic lethality. This situation somewhat resembles that of the met1 gametophytes in Arabidopsis.

Journal

Plant Molecular BiologySpringer Journals

Published: Feb 18, 2014

References

  • Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing
    Cao, X; Jacobsen, SE

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off