The mechanism of the sonochemical degradation of benzoic acid in aqueous solutions

The mechanism of the sonochemical degradation of benzoic acid in aqueous solutions The sonolytic degradation of benzoic acid in aqueous solution was investigated at an ultrasonic frequency of 355 kHz. The degradation rate was found to be dependent upon the solution pH and the surface activity of the solute. The degradation rate was favoured at a solution pH lower than the pK a of benzoic acid. At pH < pK a, HPLC, GC and ESMS analysis showed that benzoic acid could be degraded both inside the bubble by pyrolysis and at the bubble/solution interface by the reaction with OH radicals. At higher pH (> pK a) benzoic acid could only react with OH radicals in the bulk solution. During the sonolytic degradation of benzoic acid, mono-hydroxy substituted intermediates were observed as initial products. Further OH radical attack on the mono-hydroxy intermediates led to the formation of di-hydroxy derivatives. Continuous hydroxylation of the intermediates led to ring opening followed by complete mineralization. Mineralization of benzoic acid occurred at a rate of < 40μM/h. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

The mechanism of the sonochemical degradation of benzoic acid in aqueous solutions

Loading next page...
 
/lp/springer_journal/the-mechanism-of-the-sonochemical-degradation-of-benzoic-acid-in-4PpapTr8gq
Publisher
Brill Academic Publishers
Copyright
Copyright © 2004 by 2004 VSP
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/1568567041856963
Publisher site
See Article on Publisher Site

Abstract

The sonolytic degradation of benzoic acid in aqueous solution was investigated at an ultrasonic frequency of 355 kHz. The degradation rate was found to be dependent upon the solution pH and the surface activity of the solute. The degradation rate was favoured at a solution pH lower than the pK a of benzoic acid. At pH < pK a, HPLC, GC and ESMS analysis showed that benzoic acid could be degraded both inside the bubble by pyrolysis and at the bubble/solution interface by the reaction with OH radicals. At higher pH (> pK a) benzoic acid could only react with OH radicals in the bulk solution. During the sonolytic degradation of benzoic acid, mono-hydroxy substituted intermediates were observed as initial products. Further OH radical attack on the mono-hydroxy intermediates led to the formation of di-hydroxy derivatives. Continuous hydroxylation of the intermediates led to ring opening followed by complete mineralization. Mineralization of benzoic acid occurred at a rate of < 40μM/h.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Nov 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off