The mean-variance cardinality constrained portfolio optimization problem using a local search-based multi-objective evolutionary algorithm

The mean-variance cardinality constrained portfolio optimization problem using a local... Portfolio optimization problem is an important research topic in finance. The standard model of this problem, called Markowitz mean-variance model, has two conflicting criteria: expected returns and risks. In this paper, we consider a more realistic portfolio optimization problem, including both cardinality and quantity constraints, which is called Markowitz mean-variance cardinality constrained portfolio optimization problem (MVCCPO problem). We extend an algorithm which is based on a multi-objective evolutionary framework incorporating a local search schema and non-dominated sorting. To quantitatively analyze the effectiveness of the proposed algorithm, we compared our algorithm with the other five algorithms on public available data sets involving up to 225 assets. Several modifications based on the fundamental operators and procedures of the algorithm, namely, the boundary constraint handling strategy, the local search schema, the replacement strategy and the farthest-candidate approach, are proposed one-by-one. Success of this exercise is displayed via simulation results. The experimental results with different cardinality constraints illustrate that the proposed algorithm outperforms the other algorithms in terms of proximity and diversity. In addition, the diversity maintenance strategy used in the algorithm is also studied in terms of a spread metric to evaluate the distribution of the obtained non-dominated solutions. The sensitivity of our algorithm has also been experimentally investigated in this paper. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

The mean-variance cardinality constrained portfolio optimization problem using a local search-based multi-objective evolutionary algorithm

Loading next page...
 
/lp/springer_journal/the-mean-variance-cardinality-constrained-portfolio-optimization-w0IPoq4iuF
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
ISSN
0924-669X
eISSN
1573-7497
D.O.I.
10.1007/s10489-017-0898-z
Publisher site
See Article on Publisher Site

Abstract

Portfolio optimization problem is an important research topic in finance. The standard model of this problem, called Markowitz mean-variance model, has two conflicting criteria: expected returns and risks. In this paper, we consider a more realistic portfolio optimization problem, including both cardinality and quantity constraints, which is called Markowitz mean-variance cardinality constrained portfolio optimization problem (MVCCPO problem). We extend an algorithm which is based on a multi-objective evolutionary framework incorporating a local search schema and non-dominated sorting. To quantitatively analyze the effectiveness of the proposed algorithm, we compared our algorithm with the other five algorithms on public available data sets involving up to 225 assets. Several modifications based on the fundamental operators and procedures of the algorithm, namely, the boundary constraint handling strategy, the local search schema, the replacement strategy and the farthest-candidate approach, are proposed one-by-one. Success of this exercise is displayed via simulation results. The experimental results with different cardinality constraints illustrate that the proposed algorithm outperforms the other algorithms in terms of proximity and diversity. In addition, the diversity maintenance strategy used in the algorithm is also studied in terms of a spread metric to evaluate the distribution of the obtained non-dominated solutions. The sensitivity of our algorithm has also been experimentally investigated in this paper.

Journal

Applied IntelligenceSpringer Journals

Published: Apr 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off