The mean-variance cardinality constrained portfolio optimization problem using a local search-based multi-objective evolutionary algorithm

The mean-variance cardinality constrained portfolio optimization problem using a local... Portfolio optimization problem is an important research topic in finance. The standard model of this problem, called Markowitz mean-variance model, has two conflicting criteria: expected returns and risks. In this paper, we consider a more realistic portfolio optimization problem, including both cardinality and quantity constraints, which is called Markowitz mean-variance cardinality constrained portfolio optimization problem (MVCCPO problem). We extend an algorithm which is based on a multi-objective evolutionary framework incorporating a local search schema and non-dominated sorting. To quantitatively analyze the effectiveness of the proposed algorithm, we compared our algorithm with the other five algorithms on public available data sets involving up to 225 assets. Several modifications based on the fundamental operators and procedures of the algorithm, namely, the boundary constraint handling strategy, the local search schema, the replacement strategy and the farthest-candidate approach, are proposed one-by-one. Success of this exercise is displayed via simulation results. The experimental results with different cardinality constraints illustrate that the proposed algorithm outperforms the other algorithms in terms of proximity and diversity. In addition, the diversity maintenance strategy used in the algorithm is also studied in terms of a spread metric to evaluate the distribution of the obtained non-dominated solutions. The sensitivity of our algorithm has also been experimentally investigated in this paper. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

The mean-variance cardinality constrained portfolio optimization problem using a local search-based multi-objective evolutionary algorithm

Loading next page...
 
/lp/springer_journal/the-mean-variance-cardinality-constrained-portfolio-optimization-w0IPoq4iuF
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
ISSN
0924-669X
eISSN
1573-7497
D.O.I.
10.1007/s10489-017-0898-z
Publisher site
See Article on Publisher Site

Abstract

Portfolio optimization problem is an important research topic in finance. The standard model of this problem, called Markowitz mean-variance model, has two conflicting criteria: expected returns and risks. In this paper, we consider a more realistic portfolio optimization problem, including both cardinality and quantity constraints, which is called Markowitz mean-variance cardinality constrained portfolio optimization problem (MVCCPO problem). We extend an algorithm which is based on a multi-objective evolutionary framework incorporating a local search schema and non-dominated sorting. To quantitatively analyze the effectiveness of the proposed algorithm, we compared our algorithm with the other five algorithms on public available data sets involving up to 225 assets. Several modifications based on the fundamental operators and procedures of the algorithm, namely, the boundary constraint handling strategy, the local search schema, the replacement strategy and the farthest-candidate approach, are proposed one-by-one. Success of this exercise is displayed via simulation results. The experimental results with different cardinality constraints illustrate that the proposed algorithm outperforms the other algorithms in terms of proximity and diversity. In addition, the diversity maintenance strategy used in the algorithm is also studied in terms of a spread metric to evaluate the distribution of the obtained non-dominated solutions. The sensitivity of our algorithm has also been experimentally investigated in this paper.

Journal

Applied IntelligenceSpringer Journals

Published: Apr 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off