The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements

The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream... Some plants like Arabidopsis thaliana increase in freezing tolerance when exposed to low nonfreezing temperatures, a process known as cold acclimation. Other plants including tomato, Solanum lycopersicum, are chilling sensitive and incur injury during prolonged low temperature exposure. A key initial event that occurs upon low temperature exposure is the induction of genes encoding the CBF transcription factors. In Arabidopsis three CBF genes, present in a tandemly-linked cluster, are induced by low temperatures. Tomato also harbors three tandemly-linked CBF genes, Sl-CBF3–CBF1–CBF2, but only one of these, Sl-CBF1, is low-temperature responsive. Here we report that Solanum species that are closely-allied to cultivated tomato essentially share this structural organization, but the locus is in a dynamic state of flux. Additional paralogs and in-frame deletions between adjacent genes occur, and the genomic regions flanking the CBF genes are dissimilar across Solanum species. Nevertheless, the CBF1 upstream region remains intact and highly conserved. This feature differed for CBF2 and CBF3, whose upstream regions were far less conserved. CBF1 was also the only low-temperature responsive gene in the cluster and its expression was greatly affected by a circadian clock. The tuber-bearing S. tuberosum and S. commersonii also harbored a fourth gene, CBF4, which was also low temperature responsive. CBF4 was physically linked to CBF5 in S. tuberosum, but CBF5 was absent from S. commersonii. Phylogenic analyses suggest that CBF5–CBF4 resulted from the duplication of the CBF3–CBF1–CBF2 cluster. DNA sequence motifs shared between the Solanum CBF1 and CBF4 upstream regions were identified, portions of which were also present in the Arabidopsis CBF1-3 upstream regions. These results suggest that much greater functional constraints are placed upon the Solanum CBF1 upstream regions over the other CBF upstream regions and that CBF4 has retained the capacity for low temperature responsiveness following the duplication event that gave rise to CBF4. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements

Loading next page...
 
/lp/springer_journal/the-low-temperature-responsive-solanum-cbf1-genes-maintain-high-RJTACyI7G5
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9333-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial