The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements

The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream... Some plants like Arabidopsis thaliana increase in freezing tolerance when exposed to low nonfreezing temperatures, a process known as cold acclimation. Other plants including tomato, Solanum lycopersicum, are chilling sensitive and incur injury during prolonged low temperature exposure. A key initial event that occurs upon low temperature exposure is the induction of genes encoding the CBF transcription factors. In Arabidopsis three CBF genes, present in a tandemly-linked cluster, are induced by low temperatures. Tomato also harbors three tandemly-linked CBF genes, Sl-CBF3–CBF1–CBF2, but only one of these, Sl-CBF1, is low-temperature responsive. Here we report that Solanum species that are closely-allied to cultivated tomato essentially share this structural organization, but the locus is in a dynamic state of flux. Additional paralogs and in-frame deletions between adjacent genes occur, and the genomic regions flanking the CBF genes are dissimilar across Solanum species. Nevertheless, the CBF1 upstream region remains intact and highly conserved. This feature differed for CBF2 and CBF3, whose upstream regions were far less conserved. CBF1 was also the only low-temperature responsive gene in the cluster and its expression was greatly affected by a circadian clock. The tuber-bearing S. tuberosum and S. commersonii also harbored a fourth gene, CBF4, which was also low temperature responsive. CBF4 was physically linked to CBF5 in S. tuberosum, but CBF5 was absent from S. commersonii. Phylogenic analyses suggest that CBF5–CBF4 resulted from the duplication of the CBF3–CBF1–CBF2 cluster. DNA sequence motifs shared between the Solanum CBF1 and CBF4 upstream regions were identified, portions of which were also present in the Arabidopsis CBF1-3 upstream regions. These results suggest that much greater functional constraints are placed upon the Solanum CBF1 upstream regions over the other CBF upstream regions and that CBF4 has retained the capacity for low temperature responsiveness following the duplication event that gave rise to CBF4. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements

Loading next page...
 
/lp/springer_journal/the-low-temperature-responsive-solanum-cbf1-genes-maintain-high-RJTACyI7G5
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9333-5
Publisher site
See Article on Publisher Site

Abstract

Some plants like Arabidopsis thaliana increase in freezing tolerance when exposed to low nonfreezing temperatures, a process known as cold acclimation. Other plants including tomato, Solanum lycopersicum, are chilling sensitive and incur injury during prolonged low temperature exposure. A key initial event that occurs upon low temperature exposure is the induction of genes encoding the CBF transcription factors. In Arabidopsis three CBF genes, present in a tandemly-linked cluster, are induced by low temperatures. Tomato also harbors three tandemly-linked CBF genes, Sl-CBF3–CBF1–CBF2, but only one of these, Sl-CBF1, is low-temperature responsive. Here we report that Solanum species that are closely-allied to cultivated tomato essentially share this structural organization, but the locus is in a dynamic state of flux. Additional paralogs and in-frame deletions between adjacent genes occur, and the genomic regions flanking the CBF genes are dissimilar across Solanum species. Nevertheless, the CBF1 upstream region remains intact and highly conserved. This feature differed for CBF2 and CBF3, whose upstream regions were far less conserved. CBF1 was also the only low-temperature responsive gene in the cluster and its expression was greatly affected by a circadian clock. The tuber-bearing S. tuberosum and S. commersonii also harbored a fourth gene, CBF4, which was also low temperature responsive. CBF4 was physically linked to CBF5 in S. tuberosum, but CBF5 was absent from S. commersonii. Phylogenic analyses suggest that CBF5–CBF4 resulted from the duplication of the CBF3–CBF1–CBF2 cluster. DNA sequence motifs shared between the Solanum CBF1 and CBF4 upstream regions were identified, portions of which were also present in the Arabidopsis CBF1-3 upstream regions. These results suggest that much greater functional constraints are placed upon the Solanum CBF1 upstream regions over the other CBF upstream regions and that CBF4 has retained the capacity for low temperature responsiveness following the duplication event that gave rise to CBF4.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 16, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off