The Log-Linear Birnbaum-Saunders Power Model

The Log-Linear Birnbaum-Saunders Power Model In this paper the sinh-power model is developed as a natural follow up to the log-linear Birnbaum-Saunders power model. The class of models resulting, incorporates the sinh-power-normal model, the ordinary sinh-normal model and the log-linear Birnbaum-Saunders model (Rieck and Nedelman, Technometrics 33:51–60, 1991). Maximum likelihood estimation is developed with the Hessian matrix used for standard error estimation. An application is reported for the data set on lung cancer studied in Kalbfleisch and Prentice (2002), where it is shown that the log-linear Birnbaum-Saunders power-normal model presents better fit than the log-linear Birnbaum-Saunders model. Another application is devoted to a fatigue data set previously analyzed in the literature. A nonlinear Birnbaum-Saunders power-normal model is fitted to the data set, with satisfactory performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Methodology and Computing in Applied Probability Springer Journals
Loading next page...
 
/lp/springer_journal/the-log-linear-birnbaum-saunders-power-model-0rgaG0Vr3T
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Statistics; Statistics, general; Life Sciences, general; Electrical Engineering; Economics, general; Business and Management, general
ISSN
1387-5841
eISSN
1573-7713
D.O.I.
10.1007/s11009-016-9526-3
Publisher site
See Article on Publisher Site

Abstract

In this paper the sinh-power model is developed as a natural follow up to the log-linear Birnbaum-Saunders power model. The class of models resulting, incorporates the sinh-power-normal model, the ordinary sinh-normal model and the log-linear Birnbaum-Saunders model (Rieck and Nedelman, Technometrics 33:51–60, 1991). Maximum likelihood estimation is developed with the Hessian matrix used for standard error estimation. An application is reported for the data set on lung cancer studied in Kalbfleisch and Prentice (2002), where it is shown that the log-linear Birnbaum-Saunders power-normal model presents better fit than the log-linear Birnbaum-Saunders model. Another application is devoted to a fatigue data set previously analyzed in the literature. A nonlinear Birnbaum-Saunders power-normal model is fitted to the data set, with satisfactory performance.

Journal

Methodology and Computing in Applied ProbabilitySpringer Journals

Published: Nov 12, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off