The link between the microbial ecology, gene expression, and biokinetics of denitrifying polyphosphate-accumulating systems under different electron acceptor combinations

The link between the microbial ecology, gene expression, and biokinetics of denitrifying... The emission of the greenhouse gas nitrous oxide (N2O) can occur during biological nutrient removal. Denitrifying enhanced biological phosphorus removal (d-EBPR) systems are an efficient means of removing phosphate and nitrogen, performed by denitrifying polyphosphate-accumulating organisms (d-PAOs). The aim of this work was to study the effect of various combinations of electron acceptors, nitrate (NO3 −), nitrite (NO2 −), and N2O, on the denitrification pathway of a d-EBPR system. Batch tests were performed with different electron acceptor combinations, to explore the denitrification pathway. Reverse transcriptase-qPCR (RT-qPCR) and high-throughput sequencing, combined with chemical analysis, were used to study gene expression, microbial diversity, and denitrification kinetics. The potential for N2O production was greater than the potential for its reduction in most tests. A strong correlation was observed between the N2O reduction rate and the relative gene expression of nitrous oxide reductase per nitrite reductase (nosZ/(nirS + nirK)), suggesting that the expression of denitrifying marker genes is a strong predictor of the N2O reduction rate. The d-EBPR community maintained a core population with low variations throughout the study. Furthermore, phylogenetic analyses of the studied marker genes revealed that the organisms actively involved in denitrification were closely related to Thauera sp., Candidatus Accumulibacter phosphatis, and Candidatus Competibacter denitrificans. Moreover, Competibacter-related OTUs seem to be important contributors to the N2O reduction capacity of the system, likely scavenging the N2O produced by other organisms. Overall, this study contributes to a better understanding of the microbial biochemistry and the genetics involving biological denitrification removal, important to minimize N2O emissions in wastewater treatment plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

The link between the microbial ecology, gene expression, and biokinetics of denitrifying polyphosphate-accumulating systems under different electron acceptor combinations

Loading next page...
 
/lp/springer_journal/the-link-between-the-microbial-ecology-gene-expression-and-biokinetics-Sf6jNmrKqu
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
D.O.I.
10.1007/s00253-018-9077-3
Publisher site
See Article on Publisher Site

Abstract

The emission of the greenhouse gas nitrous oxide (N2O) can occur during biological nutrient removal. Denitrifying enhanced biological phosphorus removal (d-EBPR) systems are an efficient means of removing phosphate and nitrogen, performed by denitrifying polyphosphate-accumulating organisms (d-PAOs). The aim of this work was to study the effect of various combinations of electron acceptors, nitrate (NO3 −), nitrite (NO2 −), and N2O, on the denitrification pathway of a d-EBPR system. Batch tests were performed with different electron acceptor combinations, to explore the denitrification pathway. Reverse transcriptase-qPCR (RT-qPCR) and high-throughput sequencing, combined with chemical analysis, were used to study gene expression, microbial diversity, and denitrification kinetics. The potential for N2O production was greater than the potential for its reduction in most tests. A strong correlation was observed between the N2O reduction rate and the relative gene expression of nitrous oxide reductase per nitrite reductase (nosZ/(nirS + nirK)), suggesting that the expression of denitrifying marker genes is a strong predictor of the N2O reduction rate. The d-EBPR community maintained a core population with low variations throughout the study. Furthermore, phylogenetic analyses of the studied marker genes revealed that the organisms actively involved in denitrification were closely related to Thauera sp., Candidatus Accumulibacter phosphatis, and Candidatus Competibacter denitrificans. Moreover, Competibacter-related OTUs seem to be important contributors to the N2O reduction capacity of the system, likely scavenging the N2O produced by other organisms. Overall, this study contributes to a better understanding of the microbial biochemistry and the genetics involving biological denitrification removal, important to minimize N2O emissions in wastewater treatment plants.

Journal

Applied Microbiology and BiotechnologySpringer Journals

Published: Jun 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off