The Limits of Porous Materials in the Topology Optimization of Stokes Flows

The Limits of Porous Materials in the Topology Optimization of Stokes Flows We consider a problem concerning the distribution of a solid material in a given bounded control volume with the goal to minimize the potential power of the Stokes flow with given velocities at the boundary through the material-free part of the domain.We also study the relaxed problem of the optimal distribution of the porous material with a spatially varying Darcy permeability tensor, where the governing equations are known as the Darcy–Stokes, or Brinkman, equations. We show that the introduction of the requirement of zero power dissipation due to the flow through the porous material into the relaxed problem results in it becoming a well-posed mathematical problem, which admits optimal solutions that have extreme permeability properties (i.e., assume only zero or infinite permeability); thus, they are also optimal in the original (non-relaxed) problem. Two numerical techniques are presented for the solution of the constrained problem. One is based on a sequence of optimal Brinkman flows with increasing viscosities, from the mathematical point of view nothing but the exterior penalty approach applied to the problem. Another technique is more special, and is based on the “sizing” approximation of the problem using a mix of two different porous materials with high and low permeabilities, respectively. This paper thus complements the study of Borrvall and Petersson (Internat. J. Numer. Methods Fluids, vol. 41, no. 1, pp. 77–107, 2003), where only sizing optimization problems are treated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

The Limits of Porous Materials in the Topology Optimization of Stokes Flows

Loading next page...
 
/lp/springer_journal/the-limits-of-porous-materials-in-the-topology-optimization-of-stokes-MdmAe5qcD8
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer
Subject
Mathematics; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization; Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Methods
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-005-0828-z
Publisher site
See Article on Publisher Site

Abstract

We consider a problem concerning the distribution of a solid material in a given bounded control volume with the goal to minimize the potential power of the Stokes flow with given velocities at the boundary through the material-free part of the domain.We also study the relaxed problem of the optimal distribution of the porous material with a spatially varying Darcy permeability tensor, where the governing equations are known as the Darcy–Stokes, or Brinkman, equations. We show that the introduction of the requirement of zero power dissipation due to the flow through the porous material into the relaxed problem results in it becoming a well-posed mathematical problem, which admits optimal solutions that have extreme permeability properties (i.e., assume only zero or infinite permeability); thus, they are also optimal in the original (non-relaxed) problem. Two numerical techniques are presented for the solution of the constrained problem. One is based on a sequence of optimal Brinkman flows with increasing viscosities, from the mathematical point of view nothing but the exterior penalty approach applied to the problem. Another technique is more special, and is based on the “sizing” approximation of the problem using a mix of two different porous materials with high and low permeabilities, respectively. This paper thus complements the study of Borrvall and Petersson (Internat. J. Numer. Methods Fluids, vol. 41, no. 1, pp. 77–107, 2003), where only sizing optimization problems are treated.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Oct 1, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off