The Lebesgue Decomposition Theorem for Arbitrary Contents

The Lebesgue Decomposition Theorem for Arbitrary Contents The decomposition theorem named after Lebesgue asserts that certain set functions have canonical representations as sums of particular set functions called the absolutely continuous and the singular ones with respect to some fixed set function. The traditional versions are for the bounded measures with respect to some fixed measure on a σ algebra, in final form due to Hahn 1921, and for the bounded contents with respect to some fixed content on an algebra, due to Bochner-Phillips 1941 and Darst 1962. Then came the version for arbitrary measures, due to R.A.Johnson 1967 and N.Y.Luther 1968. The unpleasant fact with these versions is that each one requires its particular notions of absolutely continuous and singular constituents. It seems mysterious how a common roof for all of them could look, and therefore how a universal version for arbitrary contents could be achieved - and all that while several abstract extensions of particular versions appeared in the subsequent decades, for example due to de Lucia-Morales 2003. After these decades now the present article claims to arrive at the final aim in the original context of arbitrary contents. The article will be based on the author’s new difference formation for arbitrary contents 1999. This difference formation even furnishes simple explicit formulas for the two constituents. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

The Lebesgue Decomposition Theorem for Arbitrary Contents

Positivity , Volume 10 (4) – Jul 11, 2006

Loading next page...
 
/lp/springer_journal/the-lebesgue-decomposition-theorem-for-arbitrary-contents-IrOua9fDoJ
Publisher
Springer Journals
Copyright
Copyright © 2006 by Birkhäuser Verlag, Basel
Subject
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1007/s11117-006-0045-2
Publisher site
See Article on Publisher Site

Abstract

The decomposition theorem named after Lebesgue asserts that certain set functions have canonical representations as sums of particular set functions called the absolutely continuous and the singular ones with respect to some fixed set function. The traditional versions are for the bounded measures with respect to some fixed measure on a σ algebra, in final form due to Hahn 1921, and for the bounded contents with respect to some fixed content on an algebra, due to Bochner-Phillips 1941 and Darst 1962. Then came the version for arbitrary measures, due to R.A.Johnson 1967 and N.Y.Luther 1968. The unpleasant fact with these versions is that each one requires its particular notions of absolutely continuous and singular constituents. It seems mysterious how a common roof for all of them could look, and therefore how a universal version for arbitrary contents could be achieved - and all that while several abstract extensions of particular versions appeared in the subsequent decades, for example due to de Lucia-Morales 2003. After these decades now the present article claims to arrive at the final aim in the original context of arbitrary contents. The article will be based on the author’s new difference formation for arbitrary contents 1999. This difference formation even furnishes simple explicit formulas for the two constituents.

Journal

PositivitySpringer Journals

Published: Jul 11, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off