Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The larger, the better? Effects of delayed diameter-limit cutting on old-growth attributes and saproxylic beetle diversity in temperate oak forests

The larger, the better? Effects of delayed diameter-limit cutting on old-growth attributes and... Intensive management implies harvesting large, old trees, which reduces the old-growth attributes. This negatively affects biodiversity, especially saproxylic beetles. In managed temperate oak forests, rotation extension induced by increasing the diameter threshold of final harvest by about 10 cm compared to conventional practices (i.e. DBH around 70 cm) might mitigate this negative effect. Here, we used a gradient of the proportion of overmature trees (DBH ≥ 80 cm) among mature trees (DBH ≥ 70 cm) across plots of high oak French forests to test the potential effect of increasing diameter threshold on (1) structural features and (2) species composition and diversity of saproxylic beetles communities. We assessed deadwood and microhabitats availability (i.e. volume/density and diversity) and canopy openness in 81 1-ha plots across eleven French forests. Results highlighted that a larger proportion of overmature trees, for a given density of mature trees, had limited effects on structural features: only cavities density showed a significant positive response, with no cascading effect on cavicolous beetles. Moreover, the proportion of overmature trees had no significant effect on the composition of saproxylic beetles communities (and ecological variables altogether explained only 17% of the composition inertia). By contrast, mature tree density enhanced microhabitat density and indirectly increased the abundance of rare species. Thus, shifting DBH from 70 to 80 cm in high oak forest could have no or limited effect on saproxylic beetles conservation. Improved strategies might rather stem from combining (1) longer rotation extension and (2) less intensive management practices in extended rotation stands. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Forest Research Springer Journals

The larger, the better? Effects of delayed diameter-limit cutting on old-growth attributes and saproxylic beetle diversity in temperate oak forests

Loading next page...
 
/lp/springer_journal/the-larger-the-better-effects-of-delayed-diameter-limit-cutting-on-old-bYi8Q3xzUF

References (68)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Forestry; Plant Sciences; Plant Ecology
ISSN
1612-4669
eISSN
1612-4677
DOI
10.1007/s10342-018-1103-6
Publisher site
See Article on Publisher Site

Abstract

Intensive management implies harvesting large, old trees, which reduces the old-growth attributes. This negatively affects biodiversity, especially saproxylic beetles. In managed temperate oak forests, rotation extension induced by increasing the diameter threshold of final harvest by about 10 cm compared to conventional practices (i.e. DBH around 70 cm) might mitigate this negative effect. Here, we used a gradient of the proportion of overmature trees (DBH ≥ 80 cm) among mature trees (DBH ≥ 70 cm) across plots of high oak French forests to test the potential effect of increasing diameter threshold on (1) structural features and (2) species composition and diversity of saproxylic beetles communities. We assessed deadwood and microhabitats availability (i.e. volume/density and diversity) and canopy openness in 81 1-ha plots across eleven French forests. Results highlighted that a larger proportion of overmature trees, for a given density of mature trees, had limited effects on structural features: only cavities density showed a significant positive response, with no cascading effect on cavicolous beetles. Moreover, the proportion of overmature trees had no significant effect on the composition of saproxylic beetles communities (and ecological variables altogether explained only 17% of the composition inertia). By contrast, mature tree density enhanced microhabitat density and indirectly increased the abundance of rare species. Thus, shifting DBH from 70 to 80 cm in high oak forest could have no or limited effect on saproxylic beetles conservation. Improved strategies might rather stem from combining (1) longer rotation extension and (2) less intensive management practices in extended rotation stands.

Journal

European Journal of Forest ResearchSpringer Journals

Published: Mar 20, 2018

There are no references for this article.