The key role of 3-glycidoxypropyltrimethoxysilane sol–gel precursor in the development of wearable sensors for health monitoring

The key role of 3-glycidoxypropyltrimethoxysilane sol–gel precursor in the development of... Textiles represent an attractive class of materials for realizing wearable biosensors. Electronic textiles, or smart textiles, describe the convergence of electronics and textiles into fabrics, which are able to sense, compute, communicate, and actuate. As many different electronic systems can be connected to any clothing, a wearable system becomes more versatile, and the user can change its look depending on environmental changes and individual preference. In this review, we want to explain how it is possible to develop the sensing component of a wearable sensor by sol–gel method based on the use of opportune organofunctional trialkoxysilane precursors, such as 3-glycidoxypropyltrimethoxysilane. Results show that the halochromic dyestuffs are completely entrapped in the sol–gel coatings, both through chemical and physical interactions with the textile fabric. Moreover, a certain washing fastness was observed. Sensor films show excellent reproducibility, reversibility, and short response times, with dynamic ranges from pH 4.4–6.0 (Methyl Red), pH 6.0–7.0 (Nitrazine Yellow), and pH 4.5–8.3 (Litmus), respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Sol-Gel Science and Technology Springer Journals

The key role of 3-glycidoxypropyltrimethoxysilane sol–gel precursor in the development of wearable sensors for health monitoring

Loading next page...
 
/lp/springer_journal/the-key-role-of-3-glycidoxypropyltrimethoxysilane-sol-gel-precursor-in-ZCpXU3hBBk
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Ceramics, Glass, Composites, Natural Materials; Inorganic Chemistry; Optical and Electronic Materials; Nanotechnology
ISSN
0928-0707
eISSN
1573-4846
D.O.I.
10.1007/s10971-018-4695-x
Publisher site
See Article on Publisher Site

Abstract

Textiles represent an attractive class of materials for realizing wearable biosensors. Electronic textiles, or smart textiles, describe the convergence of electronics and textiles into fabrics, which are able to sense, compute, communicate, and actuate. As many different electronic systems can be connected to any clothing, a wearable system becomes more versatile, and the user can change its look depending on environmental changes and individual preference. In this review, we want to explain how it is possible to develop the sensing component of a wearable sensor by sol–gel method based on the use of opportune organofunctional trialkoxysilane precursors, such as 3-glycidoxypropyltrimethoxysilane. Results show that the halochromic dyestuffs are completely entrapped in the sol–gel coatings, both through chemical and physical interactions with the textile fabric. Moreover, a certain washing fastness was observed. Sensor films show excellent reproducibility, reversibility, and short response times, with dynamic ranges from pH 4.4–6.0 (Methyl Red), pH 6.0–7.0 (Nitrazine Yellow), and pH 4.5–8.3 (Litmus), respectively.

Journal

Journal of Sol-Gel Science and TechnologySpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off