The July 1, 2017 Wangjiawan landslide in Ningxiang County, China

The July 1, 2017 Wangjiawan landslide in Ningxiang County, China Many landslides were triggered by heavy rainfall from 29 June to 1 July 2017 in Ningxiang County, Hunan Province, China. A field investigation into one of the landslides, known as the Wangjiawan landslide, was undertaken on July 3, 2017, to understand the landslide mechanisms and the factors that triggered the event. The landslide is a translational and rotational slide that degraded downslope to an earth flow. It occurred on a steeply dipping mud-rich slate intercalation. Field investigation shows that the landslide had a movement rate of more than 25 m/s and had been triggered by up to 338 mm of continuous rainfall over 2 days. The landslide was fast-moving because it occurred on a steep slope and showed a rapid reduction in shear strength. The landslide resulted in nine fatalities and 19 injuries, most during initial rescue efforts. To mitigate a possible secondary landslide disaster, later emergency measures including evacuation of the survivors, setting up warning signs, and covering landslide cracks with plastic sheeting were adopted. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Landslides Springer Journals

The July 1, 2017 Wangjiawan landslide in Ningxiang County, China

Loading next page...
 
/lp/springer_journal/the-july-1-2017-wangjiawan-landslide-in-ningxiang-county-china-ksxuyvSylt
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Earth Sciences; Natural Hazards; Geography, general; Agriculture; Civil Engineering
ISSN
1612-510X
eISSN
1612-5118
D.O.I.
10.1007/s10346-018-1025-x
Publisher site
See Article on Publisher Site

Abstract

Many landslides were triggered by heavy rainfall from 29 June to 1 July 2017 in Ningxiang County, Hunan Province, China. A field investigation into one of the landslides, known as the Wangjiawan landslide, was undertaken on July 3, 2017, to understand the landslide mechanisms and the factors that triggered the event. The landslide is a translational and rotational slide that degraded downslope to an earth flow. It occurred on a steeply dipping mud-rich slate intercalation. Field investigation shows that the landslide had a movement rate of more than 25 m/s and had been triggered by up to 338 mm of continuous rainfall over 2 days. The landslide was fast-moving because it occurred on a steep slope and showed a rapid reduction in shear strength. The landslide resulted in nine fatalities and 19 injuries, most during initial rescue efforts. To mitigate a possible secondary landslide disaster, later emergency measures including evacuation of the survivors, setting up warning signs, and covering landslide cracks with plastic sheeting were adopted.

Journal

LandslidesSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off