The irreducibility in ordered Banach algebras

The irreducibility in ordered Banach algebras Let A be an ordered Banach algebra. Put $$\mathbf{OI}(A)=\{b\in A: 0 \le b\le e, b^2 = b\},$$ where e is a unit of A. An element z ≥ 0 is said to be order continuous if $${b_\alpha\downarrow 0}$$ implies $${b_\alpha z \downarrow 0}$$ and $${zb_\alpha\downarrow 0}$$ for any $${b_\alpha \in \mathbf{OI}(A)}$$ . It is shown that if E is a Dedekind complete Banach lattice then the set of all order continuous elements in L(E) coincides with the set of all positive order continuous operators on E. An algebra A is said to have a (strongly) disjunctive product if for any order continuous x and y in A(x, y ≥ 0) with xy = 0 there exists $${b \in \mathbf{OI}(A)}$$ such that xb = (e − b)y = 0. We show that the algebra L(E) has the strongly disjunctive product iff E has order continuous norm. An element $${z\in A}$$ is said to be irreducible if for every $${b \in \mathbf{OI}(A)}$$ the relation (e − b)zb = 0 implies either b = 0 or b = e. We investigate spectral properties of irreducible elements in algebras with a disjunctive product. The spectral radius r(z) is called an f-pole of the resolvent R(·, z) if 0 ≤ x ≤ z implies r(x) ≤ r(z) and if r(x) = r(z) then r(z) is a pole of R(·, x). We show that under some natural assumptions on the Banach lattice E, if $${0\le T \in L(E)}$$ then r(T) is an f-pole of R(·,T) iff r(T) is a finite-rank pole of R(·, T). We also present a theorem about the Frobenius normal form of z when r(z) is an f-pole of R(·, z). Some applications to the spectral theory of irreducible operators and the general spectral theory of positive elements are provided. In particular, we show that under some conditions 0 ≤ x < z implies r(x) < r(z). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

The irreducibility in ordered Banach algebras

Positivity , Volume 16 (1) – Mar 16, 2011

Loading next page...
 
/lp/springer_journal/the-irreducibility-in-ordered-banach-algebras-VLwyxMnsdR
Publisher
SP Birkhäuser Verlag Basel
Copyright
Copyright © 2011 by Springer Basel AG
Subject
Mathematics; Potential Theory; Operator Theory; Fourier Analysis; Econometrics; Calculus of Variations and Optimal Control; Optimization
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1007/s11117-011-0117-9
Publisher site
See Article on Publisher Site

References

  • On order convergence of nets
    Abramovich, Y.A.; Sirotkin, G.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial