The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato

The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato The chloroplast HSP100/ClpB is a newly documented member of the ClpB family, but little was known about its role in imparting thermotolerance to cells. A cDNA coding for a HSP100/ClpB homolog has been cloned from Lycopersicon esculentum and termed as Lehsp100/ClpB (the cDNA sequence of Lehsp100/ClpB has been submitted to the GenBank database under accession number: AB219939). The protein encoded by the cDNA was most similar to the putative chloroplast HSP100/ClpBs in higher plants and the ClpB from Cyanobacterium Synechococcus sp. A 97 kDa protein, which matched the predicted size of mature LeHSP100/ClpB, was immunologically detected in chloroplast isolated from heat-treated tomato plants. In addition, the fusion protein, combining the transit sequence of LeHSP100/ClpB and GFP, was found to be located in chloroplast based on the observations of fluorescent microscope images. These results indicated the chloroplast-localization of LeHSP100/ClpB. Both the transcript and the protein of Lehsp100/ClpB were not detected under normal growth conditions, but they were induced by increasingly higher temperatures. An antisense Lehsp100/ClpB cDNA fragment was introduced into the tomato by Agrobacterium-mediated transformation. Antisense lines exhibited an extreme repression of heat-induced expression of Lehsp100/ClpB. The levels of chloroplast HSP60 and small HSP in antisense lines were identical to those of the control plants. After plants preconditioned at 38°C for 2 h were exposed to a lethal heat shock at 46°C for 2 h, the antisense lines were greatly impaired and withered in 21 days of the recovery phase, whereas the untransformed control plants and the vector-transformed plants survived. Furthermore, chlorophyll fluorescence measurements showed that PS II in antisense lines were more susceptible to the thermal irreversible inactivation than the untransformed and vector-transformed control plants. This work provides the first example that induction of chloroplast LeHSP100/ClpB contributes to the acquisition of thermotolerance in higher plants. Plant Molecular Biology Springer Journals

The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato

Loading next page...
Kluwer Academic Publishers
Copyright © 2006 by Springer Science+Business Media B.V.
Life Sciences; Plant Pathology; Plant Sciences ; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial