The invasive alien plant, Impatiens glandulifera (Himalayan Balsam), and increased soil erosion: causation or association? Case studies from a river system in Switzerland and the UK

The invasive alien plant, Impatiens glandulifera (Himalayan Balsam), and increased soil erosion:... Purpose A monitoring investigation undertaken along the River Ibach, northwest Switzerland over the winter 2012/2013, found that riparian areas recently supporting the invasive plant Himalayan Balsam (HB) recorded significantly higher erosion rates than nearby uninvaded areas. This communication sythesises the latest findings about the influence of HB on sedimentation processes, again, from the Ibach, but also from a second river system in southwest UK. Materials and methods Erosion pins, a micro-profile bridge and a digital caliper were used to measure changes in soil surface profile (SSP) at selected riparian areas supporting HB plants along both rivers. Values were statistically compared against equivalent data recorded from nearby reference areas supporting mixed perennial vegetation. A comparison of source and sediment geochemistry was also undertaken on soil from HB-invaded and uninvaded floodplain areas along the Ibach, to assess the potential for identifying the extent to which either group acts as a sediment source. Results and discussion Erosion pin data indicate that soil loss from HB-colonised areas was significantly greater than soil loss from reference areas in two out of the four periods at the River Ibach site, and in two out of three measurement periods at the River Taw site. Colonisation of http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Soils and Sediments Springer Journals

The invasive alien plant, Impatiens glandulifera (Himalayan Balsam), and increased soil erosion: causation or association? Case studies from a river system in Switzerland and the UK

Loading next page...
 
/lp/springer_journal/the-invasive-alien-plant-impatiens-glandulifera-himalayan-balsam-and-xNTnzOLuid
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Soil Science & Conservation; Environment, general; Environmental Physics
ISSN
1439-0108
eISSN
1614-7480
D.O.I.
10.1007/s11368-018-2041-0
Publisher site
See Article on Publisher Site

Abstract

Purpose A monitoring investigation undertaken along the River Ibach, northwest Switzerland over the winter 2012/2013, found that riparian areas recently supporting the invasive plant Himalayan Balsam (HB) recorded significantly higher erosion rates than nearby uninvaded areas. This communication sythesises the latest findings about the influence of HB on sedimentation processes, again, from the Ibach, but also from a second river system in southwest UK. Materials and methods Erosion pins, a micro-profile bridge and a digital caliper were used to measure changes in soil surface profile (SSP) at selected riparian areas supporting HB plants along both rivers. Values were statistically compared against equivalent data recorded from nearby reference areas supporting mixed perennial vegetation. A comparison of source and sediment geochemistry was also undertaken on soil from HB-invaded and uninvaded floodplain areas along the Ibach, to assess the potential for identifying the extent to which either group acts as a sediment source. Results and discussion Erosion pin data indicate that soil loss from HB-colonised areas was significantly greater than soil loss from reference areas in two out of the four periods at the River Ibach site, and in two out of three measurement periods at the River Taw site. Colonisation of

Journal

Journal of Soils and SedimentsSpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off