The integration of neural information by a passive kinetic stimulus and galvanic vestibular stimulation in the lateral vestibular nucleus

The integration of neural information by a passive kinetic stimulus and galvanic vestibular... Despite an easy control and the direct effects on vestibular neurons, the clinical applications of galvanic vestibular stimulation (GVS) have been restricted because of its unclear activities as input. On the other hand, some critical conclusions have been made in the peripheral and the central processing of neural information by kinetic stimuli with different motion frequencies. Nevertheless, it is still elusive how the neural responses to simultaneous GVS and kinetic stimulus are modified during transmission and integration at the central vestibular area. To understand how the neural information was transmitted and integrated, we examined the neuronal responses to GVS, kinetic stimulus, and their combined stimulus in the vestibular nucleus. The neuronal response to each stimulus was recorded, and its responding features (amplitude and baseline) were extracted by applying the curve fitting based on a sinusoidal function. Twenty-five (96.2%) comparisons of the amplitudes showed that the amplitudes decreased during the combined stimulus (p < 0.001). However, the relations in the amplitudes (slope = 0.712) and the baselines (slope = 0.747) were linear. The neuronal effects by the different stimuli were separately estimated; the changes of the amplitudes were mainly caused by the kinetic stimulus and those of the baselines were largely influenced by GVS. Therefore, the slopes in the comparisons implied the neural sensitivity to the applied stimuli. Using the slopes, we found that the reduced amounts of the neural information were transmitted. Overall, the comparisons of the responding features demonstrated the linearity and the subadditivity in the neural transmission. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Medical & Biological Engineering & Computing Springer Journals

The integration of neural information by a passive kinetic stimulus and galvanic vestibular stimulation in the lateral vestibular nucleus

Loading next page...
 
/lp/springer_journal/the-integration-of-neural-information-by-a-passive-kinetic-stimulus-EPof0tiatK
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by International Federation for Medical and Biological Engineering
Subject
Biomedicine; Human Physiology; Biomedical Engineering; Imaging / Radiology; Computer Applications
ISSN
0140-0118
eISSN
1741-0444
D.O.I.
10.1007/s11517-017-1618-x
Publisher site
See Article on Publisher Site

Abstract

Despite an easy control and the direct effects on vestibular neurons, the clinical applications of galvanic vestibular stimulation (GVS) have been restricted because of its unclear activities as input. On the other hand, some critical conclusions have been made in the peripheral and the central processing of neural information by kinetic stimuli with different motion frequencies. Nevertheless, it is still elusive how the neural responses to simultaneous GVS and kinetic stimulus are modified during transmission and integration at the central vestibular area. To understand how the neural information was transmitted and integrated, we examined the neuronal responses to GVS, kinetic stimulus, and their combined stimulus in the vestibular nucleus. The neuronal response to each stimulus was recorded, and its responding features (amplitude and baseline) were extracted by applying the curve fitting based on a sinusoidal function. Twenty-five (96.2%) comparisons of the amplitudes showed that the amplitudes decreased during the combined stimulus (p < 0.001). However, the relations in the amplitudes (slope = 0.712) and the baselines (slope = 0.747) were linear. The neuronal effects by the different stimuli were separately estimated; the changes of the amplitudes were mainly caused by the kinetic stimulus and those of the baselines were largely influenced by GVS. Therefore, the slopes in the comparisons implied the neural sensitivity to the applied stimuli. Using the slopes, we found that the reduced amounts of the neural information were transmitted. Overall, the comparisons of the responding features demonstrated the linearity and the subadditivity in the neural transmission.

Journal

Medical & Biological Engineering & ComputingSpringer Journals

Published: Feb 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off