The integrated landscape of causal genes and pathways in schizophrenia

The integrated landscape of causal genes and pathways in schizophrenia Genome-wide association studies (GWAS) have identified more than 100 loci that show robust association with schizophrenia risk. However, due to the complexity of linkage disequilibrium and gene regulatory, it is challenging to pinpoint the causal genes at the risk loci and translate the genetic findings from GWAS into disease mechanism and clinical treatment. Here we systematically predicted the plausible candidate causal genes for schizophrenia at genome-wide level. We utilized different approaches and strategies to predict causal genes for schizophrenia, including Sherlock, SMR, DAPPLE, Prix Fixe, NetWAS, and DEPICT. By integrating the results from different prediction approaches, we identified six top candidates that represent promising causal genes for schizophrenia, including CNTN4, GATAD2A, GPM6A, MMP16, PSMA4, and TCF4. Besides, we also identified 35 additional high-confidence causal genes for schizophrenia. The identified causal genes showed distinct spatio-temporal expression patterns in developing and adult human brain. Cell-type-specific expression analysis indicated that the expression level of the predicted causal genes was significantly higher in neurons compared with oligodendrocytes and microglia (P < 0.05). We found that synaptic transmission-related genes were significantly enriched among the identified causal genes (P < 0.05), providing further support for the dysregulation of synaptic transmission in schizophrenia. Finally, we showed that the top six causal genes are dysregulated in schizophrenia cases compared with controls and knockdown of these genes impaired the proliferation of neuronal cells. Our study depicts the landscape of plausible schizophrenia causal genes for the first time. Further genetic and functional validation of these genes will provide mechanistic insights into schizophrenia pathogenesis and may facilitate to provide potential targets for future therapeutics and diagnostics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Translational Psychiatry Springer Journals

The integrated landscape of causal genes and pathways in schizophrenia

Loading next page...
 
/lp/springer_journal/the-integrated-landscape-of-causal-genes-and-pathways-in-schizophrenia-GTH8R67Mvl
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2018 by The Author(s)
Subject
Medicine & Public Health; Medicine/Public Health, general; Psychiatry; Neurosciences; Behavioral Sciences; Pharmacotherapy; Biological Psychology
eISSN
2158-3188
D.O.I.
10.1038/s41398-018-0114-x
Publisher site
See Article on Publisher Site

Abstract

Genome-wide association studies (GWAS) have identified more than 100 loci that show robust association with schizophrenia risk. However, due to the complexity of linkage disequilibrium and gene regulatory, it is challenging to pinpoint the causal genes at the risk loci and translate the genetic findings from GWAS into disease mechanism and clinical treatment. Here we systematically predicted the plausible candidate causal genes for schizophrenia at genome-wide level. We utilized different approaches and strategies to predict causal genes for schizophrenia, including Sherlock, SMR, DAPPLE, Prix Fixe, NetWAS, and DEPICT. By integrating the results from different prediction approaches, we identified six top candidates that represent promising causal genes for schizophrenia, including CNTN4, GATAD2A, GPM6A, MMP16, PSMA4, and TCF4. Besides, we also identified 35 additional high-confidence causal genes for schizophrenia. The identified causal genes showed distinct spatio-temporal expression patterns in developing and adult human brain. Cell-type-specific expression analysis indicated that the expression level of the predicted causal genes was significantly higher in neurons compared with oligodendrocytes and microglia (P < 0.05). We found that synaptic transmission-related genes were significantly enriched among the identified causal genes (P < 0.05), providing further support for the dysregulation of synaptic transmission in schizophrenia. Finally, we showed that the top six causal genes are dysregulated in schizophrenia cases compared with controls and knockdown of these genes impaired the proliferation of neuronal cells. Our study depicts the landscape of plausible schizophrenia causal genes for the first time. Further genetic and functional validation of these genes will provide mechanistic insights into schizophrenia pathogenesis and may facilitate to provide potential targets for future therapeutics and diagnostics.

Journal

Translational PsychiatrySpringer Journals

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off