The initial study of LLS-based binocular stereo-vision system on underwater 3D image reconstruction in the laboratory

The initial study of LLS-based binocular stereo-vision system on underwater 3D image... This study aims to develop a three-dimensional image reconstruction method based on the Laser Line Scan (LLS) technique to establish the binocular stereo-vision system for the preliminary research of obstacle detection technique of Autonomous Underwater Vehicle (AUV). A coordinate mapping relationship between 2D pixel coordinate and 3D world coordinate, which can be used to reconstruct 3D objects from 2D scan data, is established by means of direct camera calibration in air and water. In the experiments, the target object was originally designed by Computer-Aided Design (CAD) model and fabricated by the 3D printer. Subsequently, the qualities of point clouds acquired from the target object would be analyzed and compared in the stability water tank at National Cheng Kung University. The acquired point clouds would be used for polygonal surface estimation of the target object by Bonjean curve fitting method in water, with the reference results in air. The acquisition of raw point clouds has been accessed via the transformation to grayscale, histogram equalization, image binarization and skeletonization thinning. Consequently, the results evaluated by our stereo-vision system indicate the reliability and performance in the stability water tank before the application to the obstacle-avoidance of the AUV. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Marine Science and Technology Springer Journals

The initial study of LLS-based binocular stereo-vision system on underwater 3D image reconstruction in the laboratory

Loading next page...
 
/lp/springer_journal/the-initial-study-of-lls-based-binocular-stereo-vision-system-on-0f103vGkXB
Publisher
Springer Japan
Copyright
Copyright © 2017 by JASNAOE
Subject
Engineering; Automotive Engineering; Engineering Fluid Dynamics; Engineering Design; Offshore Engineering; Mechanical Engineering
ISSN
0948-4280
eISSN
1437-8213
D.O.I.
10.1007/s00773-017-0432-3
Publisher site
See Article on Publisher Site

Abstract

This study aims to develop a three-dimensional image reconstruction method based on the Laser Line Scan (LLS) technique to establish the binocular stereo-vision system for the preliminary research of obstacle detection technique of Autonomous Underwater Vehicle (AUV). A coordinate mapping relationship between 2D pixel coordinate and 3D world coordinate, which can be used to reconstruct 3D objects from 2D scan data, is established by means of direct camera calibration in air and water. In the experiments, the target object was originally designed by Computer-Aided Design (CAD) model and fabricated by the 3D printer. Subsequently, the qualities of point clouds acquired from the target object would be analyzed and compared in the stability water tank at National Cheng Kung University. The acquired point clouds would be used for polygonal surface estimation of the target object by Bonjean curve fitting method in water, with the reference results in air. The acquisition of raw point clouds has been accessed via the transformation to grayscale, histogram equalization, image binarization and skeletonization thinning. Consequently, the results evaluated by our stereo-vision system indicate the reliability and performance in the stability water tank before the application to the obstacle-avoidance of the AUV.

Journal

Journal of Marine Science and TechnologySpringer Journals

Published: Mar 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off