The initial study of LLS-based binocular stereo-vision system on underwater 3D image reconstruction in the laboratory

The initial study of LLS-based binocular stereo-vision system on underwater 3D image... This study aims to develop a three-dimensional image reconstruction method based on the Laser Line Scan (LLS) technique to establish the binocular stereo-vision system for the preliminary research of obstacle detection technique of Autonomous Underwater Vehicle (AUV). A coordinate mapping relationship between 2D pixel coordinate and 3D world coordinate, which can be used to reconstruct 3D objects from 2D scan data, is established by means of direct camera calibration in air and water. In the experiments, the target object was originally designed by Computer-Aided Design (CAD) model and fabricated by the 3D printer. Subsequently, the qualities of point clouds acquired from the target object would be analyzed and compared in the stability water tank at National Cheng Kung University. The acquired point clouds would be used for polygonal surface estimation of the target object by Bonjean curve fitting method in water, with the reference results in air. The acquisition of raw point clouds has been accessed via the transformation to grayscale, histogram equalization, image binarization and skeletonization thinning. Consequently, the results evaluated by our stereo-vision system indicate the reliability and performance in the stability water tank before the application to the obstacle-avoidance of the AUV. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Marine Science and Technology Springer Journals

The initial study of LLS-based binocular stereo-vision system on underwater 3D image reconstruction in the laboratory

Loading next page...
 
/lp/springer_journal/the-initial-study-of-lls-based-binocular-stereo-vision-system-on-0f103vGkXB
Publisher
Springer Japan
Copyright
Copyright © 2017 by JASNAOE
Subject
Engineering; Automotive Engineering; Engineering Fluid Dynamics; Engineering Design; Offshore Engineering; Mechanical Engineering
ISSN
0948-4280
eISSN
1437-8213
D.O.I.
10.1007/s00773-017-0432-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial