The influence of tool-surface contact on tool life and surface roughness when milling free-form geometries in hardened steel

The influence of tool-surface contact on tool life and surface roughness when milling free-form... Machining process planning for milling hard materials with free-form surfaces using a ball nose end mill still requires empirical determination of the machining parameters, which can limit the efficiency of the process, reduce tool life, and adversely affect workpiece surface quality. Milling free-form surfaces differs from ordinary milling because the tool-surface contact changes constantly, causing the cutting speed to vary from the programmed value (in regions where the tool touches the surface with its nominal diameter and the tool axis is parallel to the surface) to zero (in regions where the center of the tool tip cuts the material and the tool axis is almost perpendicular to the surface at the point of contact). This paper focuses on this issue and investigates the influence of effective cutting speed and tool-surface contact on tool wear and surface roughness. High-speed milling experiments were carried out in which convex circular surfaces of hardened D6 steel were machined with a ball nose end mill keeping the effective tool diameter along the tool’s circular trajectory constant in each experiment. The input variables were the lead angle (and consequently the effective tool diameter, which was kept constant in each experiment but varied from one experiment to another) and feed direction (ascendant and descendant). As the effective tool diameter increased from one experiment to another, the feed rate decreased. The results show, in contrast to other findings in the literature, that contact between the center of the tool tip and the workpiece can increase tool life and reduce roughness when milling free-form surfaces in hardened steels. Furthermore, machining time is reduced as the smaller effective tool diameter leads to a higher feed rate. A relationship was also observed between the axial machining force and process stability when the tool tip is involved in the cutting process. The International Journal of Advanced Manufacturing Technology Springer Journals

The influence of tool-surface contact on tool life and surface roughness when milling free-form geometries in hardened steel

Loading next page...
Springer London
Copyright © 2017 by Springer-Verlag London
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial