The influence of the PCF scattering on the electrical properties of the AlGaN/AlN/GaN HEMTs after the Si3N4 surface passivation

The influence of the PCF scattering on the electrical properties of the AlGaN/AlN/GaN HEMTs after... In this paper, the detailed device characteristics were investigated both before and after the Si3N4 passivation grown by plasma-enhanced chemical vapor deposition (PECVD). Better transport properties have been observed for the passivated devices compared with the same ones before passivation. The strain variation and the influence of the scattering mechanisms were analyzed and studied. The calculated results show that the non-uniform distribution of the additional polarization charges at the AlGaN/AlN/GaN interfaces has been weakened by the deposition of the Si3N4 layer. The numerical rise of the two-dimensional electron gas (2DEG) electron mobility and the decrease of the measured R on–A values were in a good consistency, and the weakening of the polarization Coulomb field (PCF) scattering after the passivation process is considered to be the main cause of these phenomena. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Physics A: Materials Science Processing Springer Journals

The influence of the PCF scattering on the electrical properties of the AlGaN/AlN/GaN HEMTs after the Si3N4 surface passivation

Loading next page...
 
/lp/springer_journal/the-influence-of-the-pcf-scattering-on-the-electrical-properties-of-zUslPfNsJ5
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Physics; Condensed Matter Physics; Optical and Electronic Materials; Nanotechnology; Characterization and Evaluation of Materials; Surfaces and Interfaces, Thin Films; Operating Procedures, Materials Treatment
ISSN
0947-8396
eISSN
1432-0630
D.O.I.
10.1007/s00339-018-1702-6
Publisher site
See Article on Publisher Site

Abstract

In this paper, the detailed device characteristics were investigated both before and after the Si3N4 passivation grown by plasma-enhanced chemical vapor deposition (PECVD). Better transport properties have been observed for the passivated devices compared with the same ones before passivation. The strain variation and the influence of the scattering mechanisms were analyzed and studied. The calculated results show that the non-uniform distribution of the additional polarization charges at the AlGaN/AlN/GaN interfaces has been weakened by the deposition of the Si3N4 layer. The numerical rise of the two-dimensional electron gas (2DEG) electron mobility and the decrease of the measured R on–A values were in a good consistency, and the weakening of the polarization Coulomb field (PCF) scattering after the passivation process is considered to be the main cause of these phenomena.

Journal

Applied Physics A: Materials Science ProcessingSpringer Journals

Published: Mar 12, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off