The influence of the arrangements of multi-sensor probe arrays on the accuracy of simultaneously measured velocity and velocity gradient-based statistics in turbulent shear flows

The influence of the arrangements of multi-sensor probe arrays on the accuracy of simultaneously... A highly resolved turbulent channel flow direct numerical simulation (DNS) with Re τ = 200 has been used to investigate the influence of the arrangements of the arrays (array configurations), within the sensing area of a multi-array hot-wire probe on the measurement accuracy of velocity and velocity gradient-based statistics. To eliminate all effects related to the sensor response and array characteristics (such as sensor dimensions, overheat ratio, thermal cross talk, number and orientations of the sensors and uniqueness range) so that this study could be focused solely on the effects of the array configurations (positions and separations), a concept of a perfect array was introduced, that is, one that can exactly and simultaneously measure all three velocity components at its center. The velocity component values, measured by these perfect arrays, are simply the DNS values computed at these points. Using these velocity components, the velocity and velocity gradient-based statistics were calculated assuming a linear velocity variation over the probes’ sensing areas. The calculated values are compared to the DNS values for various array arrangements to study the influence of these arrangements on the measurement accuracy. Typical array configurations that previously have been used for physical probes were tested. It is demonstrated that the array arrangements strongly influence the accuracy of some of the velocity and velocity gradient-based statistics and that no single configuration exists, for a given spatial resolution, which gives the best accuracy for all of the statistics characterizing a turbulent shear flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

The influence of the arrangements of multi-sensor probe arrays on the accuracy of simultaneously measured velocity and velocity gradient-based statistics in turbulent shear flows

Loading next page...
 
/lp/springer_journal/the-influence-of-the-arrangements-of-multi-sensor-probe-arrays-on-the-vBFHweGar5
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1537-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial