The Influence of Temperature on Mode I Fracture Toughness and Fracture Characteristics of Sandstone

The Influence of Temperature on Mode I Fracture Toughness and Fracture Characteristics of Sandstone This study investigated the influence of temperature on the mode I fracture toughness of sandstone using semicircular bend specimens. Fracture characteristics were studied using scanning electron microscopy and other means. The results showed that temperature influenced fracturing in three stages along a temperature gradient. In the low-temperature stage (20–100 °C), fracture toughness increases slowly, with a total increase of approximately 11%. At the medium-temperature stage (100–500 °C), fracture toughness decreases slowly, at a rate of approximately 18%. During the high-temperature stage (500–800 °C), fracture toughness was reduced by approximately 44%. The mode I fracture toughness has a clear temperature threshold (500–600 °C). Below this threshold, the fracture toughness decreases slowly. When the temperature threshold is reached, the fracture toughness decreases sharply. The sharp decrease is mainly caused by the creation of a fragmentation structure. The sandstone experiences more transgranular fracture mechanics in the low-temperature stage compared to the high-temperature stage. Above 100 °C, the mechanisms include transgranular fracturing, intergranular fracturing, thermal cracking, and mutual coupling fracturing. When the temperature exceeds 500 °C, several different fragmentation structures are seen. This research study provides significant data to evaluate fracture characteristics and rock safety and stability after heat treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Rock Mechanics and Rock Engineering Springer Journals

The Influence of Temperature on Mode I Fracture Toughness and Fracture Characteristics of Sandstone

Loading next page...
 
/lp/springer_journal/the-influence-of-temperature-on-mode-i-fracture-toughness-and-fracture-8r7z1uvLuq
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Earth Sciences; Geophysics/Geodesy; Civil Engineering
ISSN
0723-2632
eISSN
1434-453X
D.O.I.
10.1007/s00603-017-1226-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial