The Influence of Surface Pavement on the Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Watershed

The Influence of Surface Pavement on the Distribution of Polycyclic Aromatic Hydrocarbons (PAHs)... The presence of urban surface pollutants washed off by stormwater is a growing concern due to their adverse effects on receiving water quality. The stormwater quality mitigation strategies, therefore, should be based on the knowledge of the distribution and source apportionment of pollutants on urban surfaces. This study showcases the distribution of particulate-associated PAHs as a function of surface characteristic. Samples were obtained from six sites in the city of Dresden, Germany, using a wet vacuum sample-taking method. Both surface load (mg/m2) and solid-phase concentration (mg/g) of PAHs were determined. Results show that the highest surface load of ∑16PAHs was found at a natural stone-paved pedestrian path with 34.5 μg/m2. By contrast, the highest solid-phase concentration occurred at a high traffic load road with 36 mg/kg. Through a combined qualitative diagnostic ratio and quantitative principal component analysis with stepwise multiple linear regression (PCA-MLR) source apportionment, two significant contributors to PAH at vehicular roads were primarily identified as pyrogenic and petrogenic sources; 81.6% of the PAH burden was ascribed to pyrogenic sources including vehicle emission, coal, and wood combustions; 18.4% was attributed to petrogenic sources, such as spilled engine oil and vehicular tire debris. To minimize the adverse influence of surface sediments adsorbed PAHs to the receiving waters via stormwater runoff, a surface pavement-based city street sweeping strategy could be planned and optimized to remove hazardous materials from the impervious urban surfaces. Water, Air, Soil Pollution Springer Journals

The Influence of Surface Pavement on the Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Watershed

Loading next page...
Springer International Publishing
Copyright © 2017 by Springer International Publishing AG
Environment; Environment, general; Water Quality/Water Pollution; Atmospheric Protection/Air Quality Control/Air Pollution; Soil Science & Conservation; Hydrogeology; Climate Change/Climate Change Impacts
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial