The Influence of Surface Charges on Quaternary Ammonium Block of Shaker K+ Channels

The Influence of Surface Charges on Quaternary Ammonium Block of Shaker K+ Channels Block of K+ channels can be influenced by the ability of charged residues on the protein surface to accumulate cationic blocking ions to concentrations greater than those in bulk solution. We examined the ionic strength dependence of extracellular block of Shaker K+ channels by tetraethylammonium ions (TEA+) and by a trivalent quaternary ammonium ion, gallamine3+. Wild-type and mutant channels were expressed in Xenopus oocytes and currents recorded with the cut-open oocyte technique. Channel block by both compounds was substantially increased when the bathing electrolyte ionic strength was lowered, but with a much larger effect for trivalent gallamine. These data were quantitatively well described by a simple electrostatic model, accounting for accumulation of blocking ions near the pore of the channel by surface charges. The surface charge density of the wild-type channel consistent with the results was −0.1 e nm−2. Shaker channels with T449Y mutations have an increased affinity for both TEA and gallamine but the ionic strength dependence of block was described with the same surface charge density as wild-type channels. Much of the increased sensitivity of Shaker K+ channels to gallamine may be due to a larger local accumulation of the trivalent ion. The negative charge at position 431 contributes to the sensitivity of channels to TEA (MacKinnon & Yellen, 1990). A charge reversal mutation at this location had little effect on the ionic strength dependence of quaternary ammonium ion block, suggesting that the charge on this amino acid may directly affect binding affinity but not local ion accumulation. The Journal of Membrane Biology Springer Journals

The Influence of Surface Charges on Quaternary Ammonium Block of Shaker K+ Channels

Loading next page...
Copyright © Inc. by 2001 Springer-Verlag New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial