The influence of sidewall cooling on boundary layer pressure fluctuations for a two-dimensional supersonic nozzle

The influence of sidewall cooling on boundary layer pressure fluctuations for a two-dimensional... Broadband root-mean-square (rms) values and frequency spectra for pressure fluctuations in the supersonic boundary layer on a Mach 3 DeLaval nozzle sidewall and in the freestream are reported for both adiabatic and cooled surface conditions. The flat sidewall of the nozzle contained four sections independently cooled by liquid nitrogen. During the experiments, the flat sidewall was operated (1) adiabatically, (2) cooled in an approximately uniform manner to −40°C, and (3) cooled in a nonuniform manner. For all thermal boundary conditions on the sidewall, a dynamic pitot probe was traversed through the boundary layer and into the freestream to measure the broadband pressure fluctuations from 30 Hz to 100 kHz. The influence of sidewall cooling on the measured pressure fluctuations was dependent on the unit Reynolds number. Compared with the pressure fluctuations measured with an adiabatic sidewall, uniform cooling of the sidewall was found to reduce the rms pressure fluctuations in both the boundary layer and the freestream by approximately 50% at the highest stagnation pressures used (unit Reynolds numbers above 44,000/cm). Uniform cooling of the sidewall increased rms pressure fluctuations for lower stagnation pressures (unit Reynolds numbers below 44,000/cm). A reduction in the pressure fluctuation amplitude within the boundary layer resulted in a corresponding reduction in the pressure fluctuation amplitude in the test section freestream. Tests using a nonuniform temperature distribution on the sidewall indicated that cooling the portion of the sidewall covering the nozzle throat had the most influence on the pressure fluctuations in the boundary layer and in the freestream. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

The influence of sidewall cooling on boundary layer pressure fluctuations for a two-dimensional supersonic nozzle

Loading next page...
 
/lp/springer_journal/the-influence-of-sidewall-cooling-on-boundary-layer-pressure-krJNhzF9hw
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-003-0635-8
Publisher site
See Article on Publisher Site

Abstract

Broadband root-mean-square (rms) values and frequency spectra for pressure fluctuations in the supersonic boundary layer on a Mach 3 DeLaval nozzle sidewall and in the freestream are reported for both adiabatic and cooled surface conditions. The flat sidewall of the nozzle contained four sections independently cooled by liquid nitrogen. During the experiments, the flat sidewall was operated (1) adiabatically, (2) cooled in an approximately uniform manner to −40°C, and (3) cooled in a nonuniform manner. For all thermal boundary conditions on the sidewall, a dynamic pitot probe was traversed through the boundary layer and into the freestream to measure the broadband pressure fluctuations from 30 Hz to 100 kHz. The influence of sidewall cooling on the measured pressure fluctuations was dependent on the unit Reynolds number. Compared with the pressure fluctuations measured with an adiabatic sidewall, uniform cooling of the sidewall was found to reduce the rms pressure fluctuations in both the boundary layer and the freestream by approximately 50% at the highest stagnation pressures used (unit Reynolds numbers above 44,000/cm). Uniform cooling of the sidewall increased rms pressure fluctuations for lower stagnation pressures (unit Reynolds numbers below 44,000/cm). A reduction in the pressure fluctuation amplitude within the boundary layer resulted in a corresponding reduction in the pressure fluctuation amplitude in the test section freestream. Tests using a nonuniform temperature distribution on the sidewall indicated that cooling the portion of the sidewall covering the nozzle throat had the most influence on the pressure fluctuations in the boundary layer and in the freestream.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 3, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off