The influence of mutations at ATG triplets of the open reading frame SUP35 on viability of the yeast Saccharomyces cerevisiae

The influence of mutations at ATG triplets of the open reading frame SUP35 on viability of the... The open reading frame SUP35 encoding the translation termination eRF3 factor vital to life contains three ATG codons (ATG1, ATG124, and ATG254). Previously, other authors detected two SUP35 transcripts: a major one that corresponds to the full-length open reading frame and a minor transcript that corresponds to the 3′ terminal site of SUP35 starting at the third ATG codon (ATG254). In this work, mutations at triplets ATG1, ATG124, and ATG254 were obtained as well as double mutations, which combine the point mutation in one of three ATG triplets and a deletion at the site for binding with the transcription factor Abf1 within the SUP35 (sup35-ΔAbf1) promoter. The influence of these mutations on the yeast viability was analyzed. Mutations at triplets ATG124 and ATG254 did not affect yeast viability in their own right or in the background of deletion sup35-ΔAbf1. Mutation sup35-AGG 1 (ATG1 → AGG) causes the lethal effect in cells grown on media containing glucose as the sole source of carbon. The replacement of glucose by galactose, or histidine starvation, partially restore the viability of sup35-AGG 1 mutants, but not that of double mutants sup35-ΔAbf1,AGG 1 . The restoration of sup35-AGG 1 mutant viability under these conditions can be explained by either the appearance (or enhancement) of the production of short peptides synthesized on the mRNA triplets SUP35 AUG124 and AUG254, or by the enhanced production of the full-length SUP35 transcript coupled with translation initiation from the noncanonical AGG1 codon. These data confirm that the expression of gene SUP35 at the transcription and(or) translation level is regulated by environmental conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

The influence of mutations at ATG triplets of the open reading frame SUP35 on viability of the yeast Saccharomyces cerevisiae

Loading next page...
 
/lp/springer_journal/the-influence-of-mutations-at-atg-triplets-of-the-open-reading-frame-a0B0VO0H0v
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795409020045
Publisher site
See Article on Publisher Site

Abstract

The open reading frame SUP35 encoding the translation termination eRF3 factor vital to life contains three ATG codons (ATG1, ATG124, and ATG254). Previously, other authors detected two SUP35 transcripts: a major one that corresponds to the full-length open reading frame and a minor transcript that corresponds to the 3′ terminal site of SUP35 starting at the third ATG codon (ATG254). In this work, mutations at triplets ATG1, ATG124, and ATG254 were obtained as well as double mutations, which combine the point mutation in one of three ATG triplets and a deletion at the site for binding with the transcription factor Abf1 within the SUP35 (sup35-ΔAbf1) promoter. The influence of these mutations on the yeast viability was analyzed. Mutations at triplets ATG124 and ATG254 did not affect yeast viability in their own right or in the background of deletion sup35-ΔAbf1. Mutation sup35-AGG 1 (ATG1 → AGG) causes the lethal effect in cells grown on media containing glucose as the sole source of carbon. The replacement of glucose by galactose, or histidine starvation, partially restore the viability of sup35-AGG 1 mutants, but not that of double mutants sup35-ΔAbf1,AGG 1 . The restoration of sup35-AGG 1 mutant viability under these conditions can be explained by either the appearance (or enhancement) of the production of short peptides synthesized on the mRNA triplets SUP35 AUG124 and AUG254, or by the enhanced production of the full-length SUP35 transcript coupled with translation initiation from the noncanonical AGG1 codon. These data confirm that the expression of gene SUP35 at the transcription and(or) translation level is regulated by environmental conditions.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Feb 26, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off