Access the full text.
Sign up today, get DeepDyve free for 14 days.
A linear ordering of the vertices of a graph G separates two edges of G if both the endpoints of one precede both the endpoints of the other in the order. We call two edges $$\{a,b\}$$ { a , b } and $$\{c,d\}$$ { c , d } of G strongly independent if the set of endpoints $$\{a,b,c,d\}$$ { a , b , c , d } induces a $$2K_2$$ 2 K 2 in G. The induced separation dimension of a graph G is the smallest cardinality of a family $$\mathcal {L}$$ L of linear orders of V(G) such that every pair of strongly independent edges in G are separated in at least one of the linear orders in $$\mathcal {L}$$ L . For each $$k \in \mathbb {N}$$ k ∈ N , the family of graphs with induced separation dimension at most k is denoted by $${\text {ISD}}(k)$$ ISD ( k ) . In this article, we initiate a study of this new dimensional parameter. The class $${\text {ISD}}(1)$$ ISD ( 1 ) or, equivalently, the family of graphs which can be embedded on a line so that every pair of strongly independent edges are disjoint line segments, is already an interesting case. On the positive side, we give characterizations for chordal graphs in $${\text {ISD}}(1)$$ ISD ( 1 ) which immediately lead to a polynomial time algorithm which determines the induced separation dimension of chordal graphs. On the negative side, we show that the recognition problem for $${\text {ISD}}(1)$$ ISD ( 1 ) is NP-complete for general graphs. Nevertheless, we show that the maximum induced matching problem can be solved efficiently in $${\text {ISD}}(1)$$ ISD ( 1 ) . We then briefly study $${\text {ISD}}(2)$$ ISD ( 2 ) and show that it contains many important graph classes like outerplanar graphs, chordal graphs, circular arc graphs and polygon-circle graphs. Finally, we describe two techniques to construct graphs with large induced separation dimension. The first one is used to show that the maximum induced separation dimension of a graph on n vertices is $$\Theta (\lg n)$$ Θ ( lg n ) and the second one is used to construct AT-free graphs with arbitrarily large induced separation dimension. The second construction is also used to show that, for every $$k \ge 2$$ k ≥ 2 , the recognition problem for $${\text {ISD}}(k)$$ ISD ( k ) is NP-complete even on AT-free graphs.
Algorithmica – Springer Journals
Published: Jul 31, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.