The importance of cryptic species and subspecific populations in classic biological control of weeds: a North American perspective

The importance of cryptic species and subspecific populations in classic biological control of... Classical biological control of weeds depends on finding agents that are highly host-specific. This requires not only correctly understanding the identity of the target plant, sometimes to subspecific levels, in order to find suitable agents, but also identifying agents that are sufficiently specific to be safe and effective. Behavioral experiments and molecular genetic tools have revealed that some arthropod species previously thought to be polyphagous really consist of multiple cryptic species, host races or biotypes, some of which are more host-specific than others. Whereas true species are reproductively isolated, individuals from subspecific populations may potentially interbreed with those of other populations if they should encounter them. Furthermore, biotypes may consist of individuals sharing a genotype that is not fixed within a monophyletic group, and thus may not be evolutionarily stable. This raises the question of how such populations should be classified, and how to confirm the identity of live arthropods before releasing them as classical biological control agents. The existence of host races or cryptic species may greatly increase the number of prospective biological control agents available. However, it may also create new challenges for governmental regulation. These issues are discussed using pertinent examples, mainly from North America. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png BioControl Springer Journals

The importance of cryptic species and subspecific populations in classic biological control of weeds: a North American perspective

Loading next page...
 
/lp/springer_journal/the-importance-of-cryptic-species-and-subspecific-populations-in-00SqkZ0cX1
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply
Subject
Life Sciences; Entomology; Plant Pathology; Agriculture; Animal Ecology; Animal Biochemistry; Behavioral Sciences
ISSN
1386-6141
eISSN
1573-8248
D.O.I.
10.1007/s10526-017-9859-z
Publisher site
See Article on Publisher Site

Abstract

Classical biological control of weeds depends on finding agents that are highly host-specific. This requires not only correctly understanding the identity of the target plant, sometimes to subspecific levels, in order to find suitable agents, but also identifying agents that are sufficiently specific to be safe and effective. Behavioral experiments and molecular genetic tools have revealed that some arthropod species previously thought to be polyphagous really consist of multiple cryptic species, host races or biotypes, some of which are more host-specific than others. Whereas true species are reproductively isolated, individuals from subspecific populations may potentially interbreed with those of other populations if they should encounter them. Furthermore, biotypes may consist of individuals sharing a genotype that is not fixed within a monophyletic group, and thus may not be evolutionarily stable. This raises the question of how such populations should be classified, and how to confirm the identity of live arthropods before releasing them as classical biological control agents. The existence of host races or cryptic species may greatly increase the number of prospective biological control agents available. However, it may also create new challenges for governmental regulation. These issues are discussed using pertinent examples, mainly from North America.

Journal

BioControlSpringer Journals

Published: Dec 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off